Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a filtration of a commutative monoid A in a symmetric monoidal stable model category C, we construct a spectral sequence analogous to the May spectral sequence whose input is the higher order topological Hochschild homology of the associated graded commutative monoid of A, and whose output is the higher order topological Hochschild homology of A. We then construct examples of such filtrations and derive some consequences: for example, given a connective commutative graded ring R, we get an upper bound on the size of the THH–groups of E∞ –ring spectra A such that π∗(A)≅R.
Keywords: homotopy theory, higher topological Hochschild homology, spectral sequences, filtered commutative monoid, Whitehead tower
Angelini-Knoll, Gabe 1 ; Salch, Andrew 2
@article{10_2140_agt_2018_18_2593,
author = {Angelini-Knoll, Gabe and Salch, Andrew},
title = {A {May-type} spectral sequence for higher topological {Hochschild} homology},
journal = {Algebraic and Geometric Topology},
pages = {2593--2660},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {2018},
doi = {10.2140/agt.2018.18.2593},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2593/}
}
TY - JOUR AU - Angelini-Knoll, Gabe AU - Salch, Andrew TI - A May-type spectral sequence for higher topological Hochschild homology JO - Algebraic and Geometric Topology PY - 2018 SP - 2593 EP - 2660 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2593/ DO - 10.2140/agt.2018.18.2593 ID - 10_2140_agt_2018_18_2593 ER -
%0 Journal Article %A Angelini-Knoll, Gabe %A Salch, Andrew %T A May-type spectral sequence for higher topological Hochschild homology %J Algebraic and Geometric Topology %D 2018 %P 2593-2660 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2593/ %R 10.2140/agt.2018.18.2593 %F 10_2140_agt_2018_18_2593
Angelini-Knoll, Gabe; Salch, Andrew. A May-type spectral sequence for higher topological Hochschild homology. Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 2593-2660. doi: 10.2140/agt.2018.18.2593
Cité par Sources :