The eta-inverted sphere over the rationals
Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1857-1881

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We calculate the motivic stable homotopy groups of the two-complete sphere spectrum after inverting multiplication by the Hopf map η over fields of cohomological dimension at most 2 with characteristic different from 2 (this includes the p–adic fields ℚp and the finite fields 𝔽q of odd characteristic) and the field of rational numbers; the ring structure is also determined.

DOI : 10.2140/agt.2018.18.1857
Classification : 14F42, 18G15, 55Q45, 55T15
Keywords: motivic homotopy theory, Adams spectral sequence, stable homotopy groups of spheres

Wilson, Glen 1

1 Department of Mathematics, University of Oslo, Oslo, Norway
@article{10_2140_agt_2018_18_1857,
     author = {Wilson, Glen},
     title = {The eta-inverted sphere over the rationals},
     journal = {Algebraic and Geometric Topology},
     pages = {1857--1881},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     doi = {10.2140/agt.2018.18.1857},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1857/}
}
TY  - JOUR
AU  - Wilson, Glen
TI  - The eta-inverted sphere over the rationals
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 1857
EP  - 1881
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1857/
DO  - 10.2140/agt.2018.18.1857
ID  - 10_2140_agt_2018_18_1857
ER  - 
%0 Journal Article
%A Wilson, Glen
%T The eta-inverted sphere over the rationals
%J Algebraic and Geometric Topology
%D 2018
%P 1857-1881
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1857/
%R 10.2140/agt.2018.18.1857
%F 10_2140_agt_2018_18_1857
Wilson, Glen. The eta-inverted sphere over the rationals. Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1857-1881. doi: 10.2140/agt.2018.18.1857

Cité par Sources :