The eta-inverted sphere over the rationals
Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1857-1881
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We calculate the motivic stable homotopy groups of the two-complete sphere spectrum after inverting multiplication by the Hopf map η over fields of cohomological dimension at most 2 with characteristic different from 2 (this includes the p–adic fields ℚp and the finite fields 𝔽q of odd characteristic) and the field of rational numbers; the ring structure is also determined.
Classification :
14F42, 18G15, 55Q45, 55T15
Keywords: motivic homotopy theory, Adams spectral sequence, stable homotopy groups of spheres
Keywords: motivic homotopy theory, Adams spectral sequence, stable homotopy groups of spheres
Affiliations des auteurs :
Wilson, Glen 1
@article{10_2140_agt_2018_18_1857,
author = {Wilson, Glen},
title = {The eta-inverted sphere over the rationals},
journal = {Algebraic and Geometric Topology},
pages = {1857--1881},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2018},
doi = {10.2140/agt.2018.18.1857},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1857/}
}
TY - JOUR AU - Wilson, Glen TI - The eta-inverted sphere over the rationals JO - Algebraic and Geometric Topology PY - 2018 SP - 1857 EP - 1881 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1857/ DO - 10.2140/agt.2018.18.1857 ID - 10_2140_agt_2018_18_1857 ER -
Wilson, Glen. The eta-inverted sphere over the rationals. Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1857-1881. doi: 10.2140/agt.2018.18.1857
Cité par Sources :