The nonorientable 4–genus for knots with 8 or 9 crossings
Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1823-1856

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The nonorientable 4–genus of a knot in the 3–sphere is defined as the smallest first Betti number of any nonorientable surface smoothly and properly embedded in the 4–ball with boundary the given knot. We compute the nonorientable 4–genus for all knots with crossing number 8 or 9. As applications we prove a conjecture of Murakami and Yasuhara and compute the clasp and slicing number of a  knot. An errata was submitted on 18 August 2020 and posted online on 1 December 2020.

DOI : 10.2140/agt.2018.18.1823
Classification : 57M25, 57M27
Keywords: knots, nonorientable 4-genus, crosscap number, slicing number

Jabuka, Stanislav 1 ; Kelly, Tynan 1

1 Department of Mathematics and Statistics, University of Nevada, Reno, NV, United States
@article{10_2140_agt_2018_18_1823,
     author = {Jabuka, Stanislav and Kelly, Tynan},
     title = {The nonorientable 4{\textendash}genus for knots with 8 or 9 crossings},
     journal = {Algebraic and Geometric Topology},
     pages = {1823--1856},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     doi = {10.2140/agt.2018.18.1823},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1823/}
}
TY  - JOUR
AU  - Jabuka, Stanislav
AU  - Kelly, Tynan
TI  - The nonorientable 4–genus for knots with 8 or 9 crossings
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 1823
EP  - 1856
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1823/
DO  - 10.2140/agt.2018.18.1823
ID  - 10_2140_agt_2018_18_1823
ER  - 
%0 Journal Article
%A Jabuka, Stanislav
%A Kelly, Tynan
%T The nonorientable 4–genus for knots with 8 or 9 crossings
%J Algebraic and Geometric Topology
%D 2018
%P 1823-1856
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1823/
%R 10.2140/agt.2018.18.1823
%F 10_2140_agt_2018_18_1823
Jabuka, Stanislav; Kelly, Tynan. The nonorientable 4–genus for knots with 8 or 9 crossings. Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1823-1856. doi: 10.2140/agt.2018.18.1823

Cité par Sources :