Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The nonorientable 4–genus of a knot in the 3–sphere is defined as the smallest first Betti number of any nonorientable surface smoothly and properly embedded in the 4–ball with boundary the given knot. We compute the nonorientable 4–genus for all knots with crossing number 8 or 9. As applications we prove a conjecture of Murakami and Yasuhara and compute the clasp and slicing number of a knot. An errata was submitted on 18 August 2020 and posted online on 1 December 2020.
Keywords: knots, nonorientable 4-genus, crosscap number, slicing number
Jabuka, Stanislav 1 ; Kelly, Tynan 1
@article{10_2140_agt_2018_18_1823,
author = {Jabuka, Stanislav and Kelly, Tynan},
title = {The nonorientable 4{\textendash}genus for knots with 8 or 9 crossings},
journal = {Algebraic and Geometric Topology},
pages = {1823--1856},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2018},
doi = {10.2140/agt.2018.18.1823},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1823/}
}
TY - JOUR AU - Jabuka, Stanislav AU - Kelly, Tynan TI - The nonorientable 4–genus for knots with 8 or 9 crossings JO - Algebraic and Geometric Topology PY - 2018 SP - 1823 EP - 1856 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1823/ DO - 10.2140/agt.2018.18.1823 ID - 10_2140_agt_2018_18_1823 ER -
%0 Journal Article %A Jabuka, Stanislav %A Kelly, Tynan %T The nonorientable 4–genus for knots with 8 or 9 crossings %J Algebraic and Geometric Topology %D 2018 %P 1823-1856 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1823/ %R 10.2140/agt.2018.18.1823 %F 10_2140_agt_2018_18_1823
Jabuka, Stanislav; Kelly, Tynan. The nonorientable 4–genus for knots with 8 or 9 crossings. Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1823-1856. doi: 10.2140/agt.2018.18.1823
Cité par Sources :