Macfarlane hyperbolic 3–manifolds
Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1603-1632

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We identify and study a class of hyperbolic 3–manifolds (which we call Macfarlane manifolds) whose quaternion algebras admit a geometric interpretation analogous to Hamilton’s classical model for Euclidean rotations. We characterize these manifolds arithmetically, and show that infinitely many commensurability classes of them arise in diverse topological and arithmetic settings. We then use this perspective to introduce a new method for computing their Dirichlet domains. We give similar results for a class of hyperbolic surfaces and explore their occurrence as subsurfaces of Macfarlane manifolds.

DOI : 10.2140/agt.2018.18.1603
Classification : 11R52, 57M27, 57M99
Keywords: Macfarlane space, quaternion hyperboloid, hyperbolic quaternions

Quinn, Joseph 1

1 Instituto de Matemáticas, Unidad Cuernavaca, UNAM, Cuernavaca, Mexico
@article{10_2140_agt_2018_18_1603,
     author = {Quinn, Joseph},
     title = {Macfarlane hyperbolic 3{\textendash}manifolds},
     journal = {Algebraic and Geometric Topology},
     pages = {1603--1632},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     doi = {10.2140/agt.2018.18.1603},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1603/}
}
TY  - JOUR
AU  - Quinn, Joseph
TI  - Macfarlane hyperbolic 3–manifolds
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 1603
EP  - 1632
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1603/
DO  - 10.2140/agt.2018.18.1603
ID  - 10_2140_agt_2018_18_1603
ER  - 
%0 Journal Article
%A Quinn, Joseph
%T Macfarlane hyperbolic 3–manifolds
%J Algebraic and Geometric Topology
%D 2018
%P 1603-1632
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1603/
%R 10.2140/agt.2018.18.1603
%F 10_2140_agt_2018_18_1603
Quinn, Joseph. Macfarlane hyperbolic 3–manifolds. Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1603-1632. doi: 10.2140/agt.2018.18.1603

Cité par Sources :