Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We identify and study a class of hyperbolic 3–manifolds (which we call Macfarlane manifolds) whose quaternion algebras admit a geometric interpretation analogous to Hamilton’s classical model for Euclidean rotations. We characterize these manifolds arithmetically, and show that infinitely many commensurability classes of them arise in diverse topological and arithmetic settings. We then use this perspective to introduce a new method for computing their Dirichlet domains. We give similar results for a class of hyperbolic surfaces and explore their occurrence as subsurfaces of Macfarlane manifolds.
Keywords: Macfarlane space, quaternion hyperboloid, hyperbolic quaternions
Quinn, Joseph 1
@article{10_2140_agt_2018_18_1603,
author = {Quinn, Joseph},
title = {Macfarlane hyperbolic 3{\textendash}manifolds},
journal = {Algebraic and Geometric Topology},
pages = {1603--1632},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2018},
doi = {10.2140/agt.2018.18.1603},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1603/}
}
Quinn, Joseph. Macfarlane hyperbolic 3–manifolds. Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1603-1632. doi: 10.2140/agt.2018.18.1603
Cité par Sources :