A colored Khovanov spectrum and its tail for B–adequate links
Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1411-1459

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a Khovanov spectrum for 𝔰𝔩2(ℂ)–colored links and quantum spin networks and derive some of its basic properties. In the case of n–colored B–adequate links, we show a stabilization of the spectra as the coloring n →∞, generalizing the tail behavior of the colored Jones polynomial. Finally, we also provide an alternative, simpler stabilization in the case of the colored unknot.

DOI : 10.2140/agt.2018.18.1411
Classification : 57M27, 57M25
Keywords: Khovanov spectrum, Khovanov stable homotopy type, colored Khovanov homology

Willis, Michael 1

1 Department of Mathematics, University of Virginia, Charlottesville, VA, United States
@article{10_2140_agt_2018_18_1411,
     author = {Willis, Michael},
     title = {A colored {Khovanov} spectrum and its tail for {B{\textendash}adequate} links},
     journal = {Algebraic and Geometric Topology},
     pages = {1411--1459},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     doi = {10.2140/agt.2018.18.1411},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1411/}
}
TY  - JOUR
AU  - Willis, Michael
TI  - A colored Khovanov spectrum and its tail for B–adequate links
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 1411
EP  - 1459
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1411/
DO  - 10.2140/agt.2018.18.1411
ID  - 10_2140_agt_2018_18_1411
ER  - 
%0 Journal Article
%A Willis, Michael
%T A colored Khovanov spectrum and its tail for B–adequate links
%J Algebraic and Geometric Topology
%D 2018
%P 1411-1459
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1411/
%R 10.2140/agt.2018.18.1411
%F 10_2140_agt_2018_18_1411
Willis, Michael. A colored Khovanov spectrum and its tail for B–adequate links. Algebraic and Geometric Topology, Tome 18 (2018) no. 3, pp. 1411-1459. doi: 10.2140/agt.2018.18.1411

Cité par Sources :