Euler characteristics and actions of automorphism groups of free groups
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1195-1204

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Mr be a connected orientable manifold with the Euler characteristic χ(M)≢0mod6. Denote by SAut(Fn) the unique subgroup of index two in the automorphism group of a free group. Then any group action of SAut(Fn) (and thus the special linear group SLn(ℤ)) with n ≥ r + 2 on Mr by homeomorphisms is trivial. This confirms a conjecture related to Zimmer’s program for these manifolds.

DOI : 10.2140/agt.2018.18.1195
Classification : 57S20, 57S17
Keywords: Zimmer's program, Euler characteristics, matrix group actions

Ye, Shengkui 1

1 Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Jiangsu, China
@article{10_2140_agt_2018_18_1195,
     author = {Ye, Shengkui},
     title = {Euler characteristics and actions of automorphism groups of free groups},
     journal = {Algebraic and Geometric Topology},
     pages = {1195--1204},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     doi = {10.2140/agt.2018.18.1195},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1195/}
}
TY  - JOUR
AU  - Ye, Shengkui
TI  - Euler characteristics and actions of automorphism groups of free groups
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 1195
EP  - 1204
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1195/
DO  - 10.2140/agt.2018.18.1195
ID  - 10_2140_agt_2018_18_1195
ER  - 
%0 Journal Article
%A Ye, Shengkui
%T Euler characteristics and actions of automorphism groups of free groups
%J Algebraic and Geometric Topology
%D 2018
%P 1195-1204
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1195/
%R 10.2140/agt.2018.18.1195
%F 10_2140_agt_2018_18_1195
Ye, Shengkui. Euler characteristics and actions of automorphism groups of free groups. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1195-1204. doi: 10.2140/agt.2018.18.1195

Cité par Sources :