Quasi-invariant measures for some amenable groups acting on the line
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1067-1076

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if G is a solvable group acting on the line and if there is T ∈ G having no fixed points, then there is a Radon measure μ on the line quasi-invariant under G. In fact, our method allows for the same conclusion for G inside a class of groups that is closed under extensions and contains all solvable groups and all groups of subexponential growth.

DOI : 10.2140/agt.2018.18.1067
Classification : 20F16, 28D15, 37C85, 57S25
Keywords: quasi-invariant measure, subexponential growth, amenable group, semiconjugacy

Guelman, Nancy 1 ; Rivas, Cristóbal 2

1 Instituto de Matemática y Estadistica Rafael Laguardia, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
2 Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Santiago, Chile
@article{10_2140_agt_2018_18_1067,
     author = {Guelman, Nancy and Rivas, Crist\'obal},
     title = {Quasi-invariant measures for some amenable groups acting on the line},
     journal = {Algebraic and Geometric Topology},
     pages = {1067--1076},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     doi = {10.2140/agt.2018.18.1067},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1067/}
}
TY  - JOUR
AU  - Guelman, Nancy
AU  - Rivas, Cristóbal
TI  - Quasi-invariant measures for some amenable groups acting on the line
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 1067
EP  - 1076
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1067/
DO  - 10.2140/agt.2018.18.1067
ID  - 10_2140_agt_2018_18_1067
ER  - 
%0 Journal Article
%A Guelman, Nancy
%A Rivas, Cristóbal
%T Quasi-invariant measures for some amenable groups acting on the line
%J Algebraic and Geometric Topology
%D 2018
%P 1067-1076
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1067/
%R 10.2140/agt.2018.18.1067
%F 10_2140_agt_2018_18_1067
Guelman, Nancy; Rivas, Cristóbal. Quasi-invariant measures for some amenable groups acting on the line. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1067-1076. doi: 10.2140/agt.2018.18.1067

Cité par Sources :