Quasi-invariant measures for some amenable groups acting on the line
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1067-1076
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if G is a solvable group acting on the line and if there is T ∈ G having no fixed points, then there is a Radon measure μ on the line quasi-invariant under G. In fact, our method allows for the same conclusion for G inside a class of groups that is closed under extensions and contains all solvable groups and all groups of subexponential growth.
Classification :
20F16, 28D15, 37C85, 57S25
Keywords: quasi-invariant measure, subexponential growth, amenable group, semiconjugacy
Keywords: quasi-invariant measure, subexponential growth, amenable group, semiconjugacy
Affiliations des auteurs :
Guelman, Nancy 1 ; Rivas, Cristóbal 2
@article{10_2140_agt_2018_18_1067,
author = {Guelman, Nancy and Rivas, Crist\'obal},
title = {Quasi-invariant measures for some amenable groups acting on the line},
journal = {Algebraic and Geometric Topology},
pages = {1067--1076},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2018},
doi = {10.2140/agt.2018.18.1067},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1067/}
}
TY - JOUR AU - Guelman, Nancy AU - Rivas, Cristóbal TI - Quasi-invariant measures for some amenable groups acting on the line JO - Algebraic and Geometric Topology PY - 2018 SP - 1067 EP - 1076 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1067/ DO - 10.2140/agt.2018.18.1067 ID - 10_2140_agt_2018_18_1067 ER -
%0 Journal Article %A Guelman, Nancy %A Rivas, Cristóbal %T Quasi-invariant measures for some amenable groups acting on the line %J Algebraic and Geometric Topology %D 2018 %P 1067-1076 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1067/ %R 10.2140/agt.2018.18.1067 %F 10_2140_agt_2018_18_1067
Guelman, Nancy; Rivas, Cristóbal. Quasi-invariant measures for some amenable groups acting on the line. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 1067-1076. doi: 10.2140/agt.2018.18.1067
Cité par Sources :