Width of a satellite knot and its companion
Algebraic and Geometric Topology, Tome 18 (2018) no. 1, pp. 1-13

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper, we give a proof of a conjecture which says that w(K) ≥ n2w(J), where w( ⋅) is the width of a knot, K is a satellite knot with J as its companion, and n is the winding number of the pattern. We also show that equality holds if K is a satellite knot with braid pattern.

DOI : 10.2140/agt.2018.18.1
Classification : 57M25, 57M27
Keywords: width, satellite knots, companion, pattern, winding number

Guo, Qilong 1 ; Li, Zhenkun 2

1 College of Science, China University of Petroleum-Beijing, Beijing, China
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
@article{10_2140_agt_2018_18_1,
     author = {Guo, Qilong and Li, Zhenkun},
     title = {Width of a satellite knot and its companion},
     journal = {Algebraic and Geometric Topology},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     doi = {10.2140/agt.2018.18.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1/}
}
TY  - JOUR
AU  - Guo, Qilong
AU  - Li, Zhenkun
TI  - Width of a satellite knot and its companion
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 1
EP  - 13
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1/
DO  - 10.2140/agt.2018.18.1
ID  - 10_2140_agt_2018_18_1
ER  - 
%0 Journal Article
%A Guo, Qilong
%A Li, Zhenkun
%T Width of a satellite knot and its companion
%J Algebraic and Geometric Topology
%D 2018
%P 1-13
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.1/
%R 10.2140/agt.2018.18.1
%F 10_2140_agt_2018_18_1
Guo, Qilong; Li, Zhenkun. Width of a satellite knot and its companion. Algebraic and Geometric Topology, Tome 18 (2018) no. 1, pp. 1-13. doi: 10.2140/agt.2018.18.1

Cité par Sources :