Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the Hausdorff distance between any forward and any backward surgery paths in the sphere graph is at most 2. From this it follows that the Hausdorff distance between any two surgery paths with the same initial sphere system and same target sphere system is at most 4. Our proof relies on understanding how surgeries affect the Guirardel core associated to sphere systems. We show that applying a surgery is equivalent to performing a Rips move on the Guirardel core.
Keywords: sphere graph, Guirardel core, surgery path
Clay, Matt 1 ; Qing, Yulan 2 ; Rafi, Kasra 2
@article{10_2140_agt_2017_17_3751,
author = {Clay, Matt and Qing, Yulan and Rafi, Kasra},
title = {Uniform fellow traveling between surgery paths in the sphere graph},
journal = {Algebraic and Geometric Topology},
pages = {3751--3778},
publisher = {mathdoc},
volume = {17},
number = {6},
year = {2017},
doi = {10.2140/agt.2017.17.3751},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3751/}
}
TY - JOUR AU - Clay, Matt AU - Qing, Yulan AU - Rafi, Kasra TI - Uniform fellow traveling between surgery paths in the sphere graph JO - Algebraic and Geometric Topology PY - 2017 SP - 3751 EP - 3778 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3751/ DO - 10.2140/agt.2017.17.3751 ID - 10_2140_agt_2017_17_3751 ER -
%0 Journal Article %A Clay, Matt %A Qing, Yulan %A Rafi, Kasra %T Uniform fellow traveling between surgery paths in the sphere graph %J Algebraic and Geometric Topology %D 2017 %P 3751-3778 %V 17 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3751/ %R 10.2140/agt.2017.17.3751 %F 10_2140_agt_2017_17_3751
Clay, Matt; Qing, Yulan; Rafi, Kasra. Uniform fellow traveling between surgery paths in the sphere graph. Algebraic and Geometric Topology, Tome 17 (2017) no. 6, pp. 3751-3778. doi: 10.2140/agt.2017.17.3751
Cité par Sources :