Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We analyze the effect of adding, removing, and moving basepoints on link Floer homology. We prove that adding or removing basepoints via a procedure called quasistabilization is a natural operation on a certain version of link Floer homology, which we call CFLUV ∞. We consider the effect on the full link Floer complex of moving basepoints, and develop a simple calculus for moving basepoints on the link Floer complexes. We apply it to compute the effect of several diffeomorphisms corresponding to moving basepoints. Using these techniques we prove a conjecture of Sarkar about the map on the full link Floer complex induced by a finger move along a link component.
Keywords: Heegaard Floer homology, knot invariants, link invariants
Zemke, Ian 1
@article{10_2140_agt_2017_17_3461,
author = {Zemke, Ian},
title = {Quasistabilization and basepoint moving maps in link {Floer} homology},
journal = {Algebraic and Geometric Topology},
pages = {3461--3518},
publisher = {mathdoc},
volume = {17},
number = {6},
year = {2017},
doi = {10.2140/agt.2017.17.3461},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3461/}
}
TY - JOUR AU - Zemke, Ian TI - Quasistabilization and basepoint moving maps in link Floer homology JO - Algebraic and Geometric Topology PY - 2017 SP - 3461 EP - 3518 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3461/ DO - 10.2140/agt.2017.17.3461 ID - 10_2140_agt_2017_17_3461 ER -
%0 Journal Article %A Zemke, Ian %T Quasistabilization and basepoint moving maps in link Floer homology %J Algebraic and Geometric Topology %D 2017 %P 3461-3518 %V 17 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3461/ %R 10.2140/agt.2017.17.3461 %F 10_2140_agt_2017_17_3461
Zemke, Ian. Quasistabilization and basepoint moving maps in link Floer homology. Algebraic and Geometric Topology, Tome 17 (2017) no. 6, pp. 3461-3518. doi: 10.2140/agt.2017.17.3461
Cité par Sources :