Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In part I, we constructed invariants of irreducible finite-dimensional representations of the Kauffman bracket skein algebra of a surface. We introduce here an inverse construction, which to a set of possible invariants associates an irreducible representation that realizes these invariants. The current article is restricted to surfaces with at least one puncture, a condition that is lifted in subsequent work relying on this one. A step in the proof is of independent interest, and describes the arithmetic structure of the Thurston intersection form on the space of integer weight systems for a train track.
Keywords: Kauffman bracket, skein algebra, quantum Teichmüller space
Bonahon, Francis 1 ; Wong, Helen 2
@article{10_2140_agt_2017_17_3399,
author = {Bonahon, Francis and Wong, Helen},
title = {Representations of the {Kauffman} bracket skein algebra, {II:} {Punctured} surfaces},
journal = {Algebraic and Geometric Topology},
pages = {3399--3434},
publisher = {mathdoc},
volume = {17},
number = {6},
year = {2017},
doi = {10.2140/agt.2017.17.3399},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3399/}
}
TY - JOUR AU - Bonahon, Francis AU - Wong, Helen TI - Representations of the Kauffman bracket skein algebra, II: Punctured surfaces JO - Algebraic and Geometric Topology PY - 2017 SP - 3399 EP - 3434 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3399/ DO - 10.2140/agt.2017.17.3399 ID - 10_2140_agt_2017_17_3399 ER -
%0 Journal Article %A Bonahon, Francis %A Wong, Helen %T Representations of the Kauffman bracket skein algebra, II: Punctured surfaces %J Algebraic and Geometric Topology %D 2017 %P 3399-3434 %V 17 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3399/ %R 10.2140/agt.2017.17.3399 %F 10_2140_agt_2017_17_3399
Bonahon, Francis; Wong, Helen. Representations of the Kauffman bracket skein algebra, II: Punctured surfaces. Algebraic and Geometric Topology, Tome 17 (2017) no. 6, pp. 3399-3434. doi: 10.2140/agt.2017.17.3399
Cité par Sources :