Representations of the Kauffman bracket skein algebra, II: Punctured surfaces
Algebraic and Geometric Topology, Tome 17 (2017) no. 6, pp. 3399-3434

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In part I, we constructed invariants of irreducible finite-dimensional representations of the Kauffman bracket skein algebra of a surface. We introduce here an inverse construction, which to a set of possible invariants associates an irreducible representation that realizes these invariants. The current article is restricted to surfaces with at least one puncture, a condition that is lifted in subsequent work relying on this one. A step in the proof is of independent interest, and describes the arithmetic structure of the Thurston intersection form on the space of integer weight systems for a train track.

DOI : 10.2140/agt.2017.17.3399
Classification : 57M27, 57R56, 57M27
Keywords: Kauffman bracket, skein algebra, quantum Teichmüller space

Bonahon, Francis 1 ; Wong, Helen 2

1 Department of Mathematics, University of Southern California, Los Angeles, CA, United States
2 Department of Mathematics, Carleton College, Northfield, MN, United States
@article{10_2140_agt_2017_17_3399,
     author = {Bonahon, Francis and Wong, Helen},
     title = {Representations of the {Kauffman} bracket skein algebra, {II:} {Punctured} surfaces},
     journal = {Algebraic and Geometric Topology},
     pages = {3399--3434},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2017},
     doi = {10.2140/agt.2017.17.3399},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3399/}
}
TY  - JOUR
AU  - Bonahon, Francis
AU  - Wong, Helen
TI  - Representations of the Kauffman bracket skein algebra, II: Punctured surfaces
JO  - Algebraic and Geometric Topology
PY  - 2017
SP  - 3399
EP  - 3434
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3399/
DO  - 10.2140/agt.2017.17.3399
ID  - 10_2140_agt_2017_17_3399
ER  - 
%0 Journal Article
%A Bonahon, Francis
%A Wong, Helen
%T Representations of the Kauffman bracket skein algebra, II: Punctured surfaces
%J Algebraic and Geometric Topology
%D 2017
%P 3399-3434
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3399/
%R 10.2140/agt.2017.17.3399
%F 10_2140_agt_2017_17_3399
Bonahon, Francis; Wong, Helen. Representations of the Kauffman bracket skein algebra, II: Punctured surfaces. Algebraic and Geometric Topology, Tome 17 (2017) no. 6, pp. 3399-3434. doi: 10.2140/agt.2017.17.3399

Cité par Sources :