Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Khovanov and Rozansky’s categorification of the homfly-pt polynomial is invariant under braidlike isotopies for any general link diagram and Markov moves for braid closures. To define homfly-pt homology, they required a link to be presented as a braid closure, because they did not prove invariance under the other oriented Reidemeister moves. In this text we prove that the Reidemeister IIb move fails in homfly-pt homology by using virtual crossing filtrations of the author and Rozansky. The decategorification of homfly-pt homology for general link diagrams gives a deformed version of the homfly-pt polynomial, Pb(D), which can be used to detect nonbraidlike isotopies. Finally, we will use Pb(D) to prove that homfly-pt homology is not an invariant of virtual links, even when virtual links are presented as virtual braid closures.
Keywords: braidlike isotopy, Khovanov–Rozansky homology, virtual links
Abel, Michael 1
@article{10_2140_agt_2017_17_3021,
author = {Abel, Michael},
title = {HOMFLY-PT homology for general link diagrams and braidlike isotopy},
journal = {Algebraic and Geometric Topology},
pages = {3021--3056},
publisher = {mathdoc},
volume = {17},
number = {5},
year = {2017},
doi = {10.2140/agt.2017.17.3021},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3021/}
}
TY - JOUR AU - Abel, Michael TI - HOMFLY-PT homology for general link diagrams and braidlike isotopy JO - Algebraic and Geometric Topology PY - 2017 SP - 3021 EP - 3056 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3021/ DO - 10.2140/agt.2017.17.3021 ID - 10_2140_agt_2017_17_3021 ER -
%0 Journal Article %A Abel, Michael %T HOMFLY-PT homology for general link diagrams and braidlike isotopy %J Algebraic and Geometric Topology %D 2017 %P 3021-3056 %V 17 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.3021/ %R 10.2140/agt.2017.17.3021 %F 10_2140_agt_2017_17_3021
Abel, Michael. HOMFLY-PT homology for general link diagrams and braidlike isotopy. Algebraic and Geometric Topology, Tome 17 (2017) no. 5, pp. 3021-3056. doi: 10.2140/agt.2017.17.3021
Cité par Sources :