Odd knot invariants from quantum covering groups
Algebraic and Geometric Topology, Tome 17 (2017) no. 5, pp. 2961-3005

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the quantum covering group associated to osp(1|2n) has an associated colored quantum knot invariant à la Reshetikhin–Turaev, which specializes to a quantum knot invariant for osp(1|2n), and to the usual quantum knot invariant for so(1 + 2n). In particular, this furnishes an “odd” variant of so(1 + 2n) quantum invariants, even for knots labeled by spin representations. We then show that these knot invariants are essentially the same, up to a change of variables and a constant factor depending on the knot and weight.

DOI : 10.2140/agt.2017.17.2961
Classification : 17B37, 57M27
Keywords: quantum groups, knot invariants, Lie superalgebra

Clark, Sean 1

1 Department of Mathematics, Northeastern University, Boston, MA, United States
@article{10_2140_agt_2017_17_2961,
     author = {Clark, Sean},
     title = {Odd knot invariants from quantum covering groups},
     journal = {Algebraic and Geometric Topology},
     pages = {2961--3005},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2017},
     doi = {10.2140/agt.2017.17.2961},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2961/}
}
TY  - JOUR
AU  - Clark, Sean
TI  - Odd knot invariants from quantum covering groups
JO  - Algebraic and Geometric Topology
PY  - 2017
SP  - 2961
EP  - 3005
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2961/
DO  - 10.2140/agt.2017.17.2961
ID  - 10_2140_agt_2017_17_2961
ER  - 
%0 Journal Article
%A Clark, Sean
%T Odd knot invariants from quantum covering groups
%J Algebraic and Geometric Topology
%D 2017
%P 2961-3005
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2961/
%R 10.2140/agt.2017.17.2961
%F 10_2140_agt_2017_17_2961
Clark, Sean. Odd knot invariants from quantum covering groups. Algebraic and Geometric Topology, Tome 17 (2017) no. 5, pp. 2961-3005. doi: 10.2140/agt.2017.17.2961

Cité par Sources :