The surgery exact triangle in Pin(2)–monopole Floer homology
Algebraic and Geometric Topology, Tome 17 (2017) no. 5, pp. 2915-2960

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the existence of an exact triangle for the Pin(2)–monopole Floer homology groups of three-manifolds related by specific Dehn surgeries on a given knot. Unlike the counterpart in usual monopole Floer homology, only two of the three maps are those induced by the corresponding elementary cobordism. We use this triangle to describe the Manolescu correction terms of the manifolds obtained by (±1)–surgery on alternating knots with Arf invariant 1.

DOI : 10.2140/agt.2017.17.2915
Classification : 57M27
Keywords: Seiberg–Witten, monopoles, surgery, correction terms

Lin, Francesco 1

1 Department of Mathematics, Princeton University, Princeton, NJ, United States
@article{10_2140_agt_2017_17_2915,
     author = {Lin, Francesco},
     title = {The surgery exact triangle in {Pin(2){\textendash}monopole} {Floer} homology},
     journal = {Algebraic and Geometric Topology},
     pages = {2915--2960},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2017},
     doi = {10.2140/agt.2017.17.2915},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2915/}
}
TY  - JOUR
AU  - Lin, Francesco
TI  - The surgery exact triangle in Pin(2)–monopole Floer homology
JO  - Algebraic and Geometric Topology
PY  - 2017
SP  - 2915
EP  - 2960
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2915/
DO  - 10.2140/agt.2017.17.2915
ID  - 10_2140_agt_2017_17_2915
ER  - 
%0 Journal Article
%A Lin, Francesco
%T The surgery exact triangle in Pin(2)–monopole Floer homology
%J Algebraic and Geometric Topology
%D 2017
%P 2915-2960
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2915/
%R 10.2140/agt.2017.17.2915
%F 10_2140_agt_2017_17_2915
Lin, Francesco. The surgery exact triangle in Pin(2)–monopole Floer homology. Algebraic and Geometric Topology, Tome 17 (2017) no. 5, pp. 2915-2960. doi: 10.2140/agt.2017.17.2915

Cité par Sources :