Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a rank-2 hermitian bundle over a 3–manifold that is nontrivial admissible in the sense of Floer, one defines its Casson invariant as half the signed count of its projectively flat connections, suitably perturbed. We show that the 2–divisibility of this integer invariant is controlled in part by a formula involving the mod 2 cohomology ring of the 3–manifold. This formula counts flat connections on the induced adjoint bundle with Klein-four holonomy.
Keywords: Casson invariant, Lescop invariant, $2$–torsion
Scaduto, Christopher 1 ; Stoffregen, Matthew 2
@article{10_2140_agt_2017_17_2841,
author = {Scaduto, Christopher and Stoffregen, Matthew},
title = {Klein-four connections and the {Casson} invariant for nontrivial admissible {U(2)} bundles},
journal = {Algebraic and Geometric Topology},
pages = {2841--2861},
publisher = {mathdoc},
volume = {17},
number = {5},
year = {2017},
doi = {10.2140/agt.2017.17.2841},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2841/}
}
TY - JOUR AU - Scaduto, Christopher AU - Stoffregen, Matthew TI - Klein-four connections and the Casson invariant for nontrivial admissible U(2) bundles JO - Algebraic and Geometric Topology PY - 2017 SP - 2841 EP - 2861 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2841/ DO - 10.2140/agt.2017.17.2841 ID - 10_2140_agt_2017_17_2841 ER -
%0 Journal Article %A Scaduto, Christopher %A Stoffregen, Matthew %T Klein-four connections and the Casson invariant for nontrivial admissible U(2) bundles %J Algebraic and Geometric Topology %D 2017 %P 2841-2861 %V 17 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2841/ %R 10.2140/agt.2017.17.2841 %F 10_2140_agt_2017_17_2841
Scaduto, Christopher; Stoffregen, Matthew. Klein-four connections and the Casson invariant for nontrivial admissible U(2) bundles. Algebraic and Geometric Topology, Tome 17 (2017) no. 5, pp. 2841-2861. doi: 10.2140/agt.2017.17.2841
Cité par Sources :