A generalized axis theorem for cube complexes
Algebraic and Geometric Topology, Tome 17 (2017) no. 5, pp. 2737-2751

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider a finitely generated virtually abelian group G acting properly and without inversions on a CAT(0) cube complex X. We prove that G stabilizes a finite-dimensional CAT(0) subcomplex Y ⊆ X that is isometrically embedded in the combinatorial metric. Moreover, we show that Y is a product of finitely many quasilines. The result represents a higher-dimensional generalization of Haglund’s axis theorem.

DOI : 10.2140/agt.2017.17.2737
Classification : 20F65
Keywords: $\mathrm{CAT}(0)$ cube complexes, geometric group theory, axis

Woodhouse, Daniel 1

1 Mathematics Department, Technion – Israel Institute of Technology, Haifa, Israel
@article{10_2140_agt_2017_17_2737,
     author = {Woodhouse, Daniel},
     title = {A generalized axis theorem for cube complexes},
     journal = {Algebraic and Geometric Topology},
     pages = {2737--2751},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2017},
     doi = {10.2140/agt.2017.17.2737},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2737/}
}
TY  - JOUR
AU  - Woodhouse, Daniel
TI  - A generalized axis theorem for cube complexes
JO  - Algebraic and Geometric Topology
PY  - 2017
SP  - 2737
EP  - 2751
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2737/
DO  - 10.2140/agt.2017.17.2737
ID  - 10_2140_agt_2017_17_2737
ER  - 
%0 Journal Article
%A Woodhouse, Daniel
%T A generalized axis theorem for cube complexes
%J Algebraic and Geometric Topology
%D 2017
%P 2737-2751
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2017.17.2737/
%R 10.2140/agt.2017.17.2737
%F 10_2140_agt_2017_17_2737
Woodhouse, Daniel. A generalized axis theorem for cube complexes. Algebraic and Geometric Topology, Tome 17 (2017) no. 5, pp. 2737-2751. doi: 10.2140/agt.2017.17.2737

Cité par Sources :