Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if ℒ is a codimension-one lamination in a finite volume hyperbolic 3–manifold such that the principal curvatures of each leaf of ℒ are all in the interval (−δ,δ) for a fixed δ with 0 ≤ δ < 1 and no complementary region of ℒ is an interval bundle over a surface, then each boundary leaf of ℒ has a nontrivial fundamental group. We also prove existence of a fixed constant δ0 > 0 such that if ℒ is a codimension-one lamination in a finite volume hyperbolic 3–manifold such that the principal curvatures of each leaf of ℒ are all in the interval (−δ0,δ0) and no complementary region of ℒ is an interval bundle over a surface, then each boundary leaf of ℒ has a noncyclic fundamental group.
Breslin, William 1
@article{10_2140_agt_2009_9_723,
author = {Breslin, William},
title = {Small curvature laminations in hyperbolic 3{\textendash}manifolds},
journal = {Algebraic and Geometric Topology},
pages = {723--729},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2009},
doi = {10.2140/agt.2009.9.723},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.723/}
}
TY - JOUR AU - Breslin, William TI - Small curvature laminations in hyperbolic 3–manifolds JO - Algebraic and Geometric Topology PY - 2009 SP - 723 EP - 729 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2009.9.723/ DO - 10.2140/agt.2009.9.723 ID - 10_2140_agt_2009_9_723 ER -
Breslin, William. Small curvature laminations in hyperbolic 3–manifolds. Algebraic and Geometric Topology, Tome 9 (2009) no. 2, pp. 723-729. doi: 10.2140/agt.2009.9.723
Cité par Sources :