Characterization of irreducible polynomials over a special principal ideal ring
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 501-506.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A commutative ring $R$ with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length $e$ is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length $2$. Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length $e$.
DOI : 10.21136/MB.2022.0187-21
Classification : 13B25, 13F20
Keywords: polynomial; irreducibility; commutative principal ideal ring
@article{10_21136_MB_2022_0187_21,
     author = {Boudine, Brahim},
     title = {Characterization of irreducible polynomials over a special principal ideal ring},
     journal = {Mathematica Bohemica},
     pages = {501--506},
     publisher = {mathdoc},
     volume = {148},
     number = {4},
     year = {2023},
     doi = {10.21136/MB.2022.0187-21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/}
}
TY  - JOUR
AU  - Boudine, Brahim
TI  - Characterization of irreducible polynomials over a special principal ideal ring
JO  - Mathematica Bohemica
PY  - 2023
SP  - 501
EP  - 506
VL  - 148
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/
DO  - 10.21136/MB.2022.0187-21
LA  - en
ID  - 10_21136_MB_2022_0187_21
ER  - 
%0 Journal Article
%A Boudine, Brahim
%T Characterization of irreducible polynomials over a special principal ideal ring
%J Mathematica Bohemica
%D 2023
%P 501-506
%V 148
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/
%R 10.21136/MB.2022.0187-21
%G en
%F 10_21136_MB_2022_0187_21
Boudine, Brahim. Characterization of irreducible polynomials over a special principal ideal ring. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 501-506. doi : 10.21136/MB.2022.0187-21. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/

Cité par Sources :