Characterization of irreducible polynomials over a special principal ideal ring
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 501-506
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A commutative ring $R$ with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length $e$ is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length $2$. Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length $e$.
A commutative ring $R$ with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length $e$ is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length $2$. Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length $e$.
DOI : 10.21136/MB.2022.0187-21
Classification : 13B25, 13F20
Keywords: polynomial; irreducibility; commutative principal ideal ring
@article{10_21136_MB_2022_0187_21,
     author = {Boudine, Brahim},
     title = {Characterization of irreducible polynomials over a special principal ideal ring},
     journal = {Mathematica Bohemica},
     pages = {501--506},
     year = {2023},
     volume = {148},
     number = {4},
     doi = {10.21136/MB.2022.0187-21},
     mrnumber = {4673833},
     zbl = {07790599},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/}
}
TY  - JOUR
AU  - Boudine, Brahim
TI  - Characterization of irreducible polynomials over a special principal ideal ring
JO  - Mathematica Bohemica
PY  - 2023
SP  - 501
EP  - 506
VL  - 148
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/
DO  - 10.21136/MB.2022.0187-21
LA  - en
ID  - 10_21136_MB_2022_0187_21
ER  - 
%0 Journal Article
%A Boudine, Brahim
%T Characterization of irreducible polynomials over a special principal ideal ring
%J Mathematica Bohemica
%D 2023
%P 501-506
%V 148
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/
%R 10.21136/MB.2022.0187-21
%G en
%F 10_21136_MB_2022_0187_21
Boudine, Brahim. Characterization of irreducible polynomials over a special principal ideal ring. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 501-506. doi: 10.21136/MB.2022.0187-21

[1] Azumaya, G.: On maximally central algebras. Nagoya Math. J. 2 (1951), 119-150. | DOI | MR | JFM

[2] Berlekamp, E. R.: Algebraic Coding Theory. McGraw-Hill, New York (1968). | DOI | MR | JFM

[3] Brown, W. C.: Matrices Over Commutative Rings. Pure and Applied Mathematics 169. Marcel Dekker, New York (1993). | MR | JFM

[4] Charkani, M. E., Boudine, B.: On the integral ideals of $R [X]$ when $R$ is a special principal ideal ring. São Paulo J. Math. Sci. 14 (2020), 698-702. | DOI | MR | JFM

[5] Chor, B., Rivest, R. L.: A knapsack-type public key cryptosystem based on arithmetic in finite fields. IEEE Trans. Inf. Theory 34 (1988), 901-909. | DOI | MR | JFM

[6] Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics 150. Springer, Berlin 1995. | DOI | MR | JFM

[7] Hachenberger, D., Jungnickel, D.: Irreducible polynomials over finite fields. Topics in Galois Fields Algorithms and Computation in Mathematics 29. Springer, Cham (2020), 197-239. | DOI | MR

[8] Rabin, M. O.: Probabilistic algorithms in finite fields. SIAM J. Comput. 9 (1980), 273-280. | DOI | MR | JFM

[9] Rotthaus, C.: Excellent rings, Henselian rings and the approximation property. Rocky Mt. J. Math. 27 (1997), 317-334. | DOI | MR | JFM

Cité par Sources :