Characterization of irreducible polynomials over a special principal ideal ring
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 501-506
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A commutative ring $R$ with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length $e$ is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length $2$. Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length $e$.
Classification :
13B25, 13F20
Keywords: polynomial; irreducibility; commutative principal ideal ring
Keywords: polynomial; irreducibility; commutative principal ideal ring
@article{10_21136_MB_2022_0187_21,
author = {Boudine, Brahim},
title = {Characterization of irreducible polynomials over a special principal ideal ring},
journal = {Mathematica Bohemica},
pages = {501--506},
publisher = {mathdoc},
volume = {148},
number = {4},
year = {2023},
doi = {10.21136/MB.2022.0187-21},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/}
}
TY - JOUR AU - Boudine, Brahim TI - Characterization of irreducible polynomials over a special principal ideal ring JO - Mathematica Bohemica PY - 2023 SP - 501 EP - 506 VL - 148 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/ DO - 10.21136/MB.2022.0187-21 LA - en ID - 10_21136_MB_2022_0187_21 ER -
%0 Journal Article %A Boudine, Brahim %T Characterization of irreducible polynomials over a special principal ideal ring %J Mathematica Bohemica %D 2023 %P 501-506 %V 148 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0187-21/ %R 10.21136/MB.2022.0187-21 %G en %F 10_21136_MB_2022_0187_21
Boudine, Brahim. Characterization of irreducible polynomials over a special principal ideal ring. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 501-506. doi: 10.21136/MB.2022.0187-21
Cité par Sources :