Bicyclic commutator quotients with one non-elementary component
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 149-180
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For any number field $K$ with non-elementary $3$-class group ${\rm Cl}_3(K)\simeq C_{3^e}\times C_3$, $e\ge 2$, the punctured capitulation type $\varkappa (K)$ of $K$ in its unramified cyclic cubic extensions $L_i$, $1\le i\le 4$, is an orbit under the action of $S_3\times S_3$. By means of Artin's reciprocity law, the arithmetical invariant $\varkappa (K)$ is translated to the punctured transfer kernel type $\varkappa (G_2)$ of the automorphism group $G_2={\rm Gal}({\rm F}_3^2(K)/K)$ of the second Hilbert $3$-class field of $K$. A classification of finite $3$-groups $G$ with low order and bicyclic commutator quotient $G/G^\prime \simeq C_{3^e}\times C_3$, $2\le e\le 6$, according to the algebraic invariant $\varkappa (G)$, admits conclusions concerning the length of the Hilbert $3$-class field tower ${\rm F}_3^\infty (K)$ of imaginary quadratic number fields $K$.
For any number field $K$ with non-elementary $3$-class group ${\rm Cl}_3(K)\simeq C_{3^e}\times C_3$, $e\ge 2$, the punctured capitulation type $\varkappa (K)$ of $K$ in its unramified cyclic cubic extensions $L_i$, $1\le i\le 4$, is an orbit under the action of $S_3\times S_3$. By means of Artin's reciprocity law, the arithmetical invariant $\varkappa (K)$ is translated to the punctured transfer kernel type $\varkappa (G_2)$ of the automorphism group $G_2={\rm Gal}({\rm F}_3^2(K)/K)$ of the second Hilbert $3$-class field of $K$. A classification of finite $3$-groups $G$ with low order and bicyclic commutator quotient $G/G^\prime \simeq C_{3^e}\times C_3$, $2\le e\le 6$, according to the algebraic invariant $\varkappa (G)$, admits conclusions concerning the length of the Hilbert $3$-class field tower ${\rm F}_3^\infty (K)$ of imaginary quadratic number fields $K$.
DOI : 10.21136/MB.2022.0127-21
Classification : 11R11, 11R20, 11R29, 11R32, 11R37, 11Y40, 20D15, 20E18, 20E22, 20F05, 20F12, 20F14
Keywords: Hilbert $3$-class field tower; maximal unramified pro-$3$ extension; unramified cyclic cubic extensions; Galois action; imaginary quadratic fields; bicyclic $3$-class group; punctured capitulation types; statistics; pro-$3$ groups; finite $3$-groups; generator rank; relation rank; Schur $\sigma $-groups; low index normal subgroups; kernels of Artin transfers; abelian quotient invariants; $p$-group generation algorithm; descendant trees; antitony principle
@article{10_21136_MB_2022_0127_21,
     author = {Mayer, Daniel C.},
     title = {Bicyclic commutator quotients with one non-elementary component},
     journal = {Mathematica Bohemica},
     pages = {149--180},
     year = {2023},
     volume = {148},
     number = {2},
     doi = {10.21136/MB.2022.0127-21},
     mrnumber = {4585574},
     zbl = {07729570},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0127-21/}
}
TY  - JOUR
AU  - Mayer, Daniel C.
TI  - Bicyclic commutator quotients with one non-elementary component
JO  - Mathematica Bohemica
PY  - 2023
SP  - 149
EP  - 180
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0127-21/
DO  - 10.21136/MB.2022.0127-21
LA  - en
ID  - 10_21136_MB_2022_0127_21
ER  - 
%0 Journal Article
%A Mayer, Daniel C.
%T Bicyclic commutator quotients with one non-elementary component
%J Mathematica Bohemica
%D 2023
%P 149-180
%V 148
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0127-21/
%R 10.21136/MB.2022.0127-21
%G en
%F 10_21136_MB_2022_0127_21
Mayer, Daniel C. Bicyclic commutator quotients with one non-elementary component. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 149-180. doi: 10.21136/MB.2022.0127-21

[1] Arrigoni, M.: On Schur $\sigma$-groups. Math. Nachr. 192 (1998), 71-89. | DOI | MR | JFM

[2] Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Abh. Math. Semin. Univ. Hamb. 5 (1927), 353-363 German \99999JFM99999 53.0144.04. | DOI | MR

[3] Artin, E.: Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Semin. Univ. Hamb. 7 (1929), 46-51 German \99999JFM99999 55.0699.01. | DOI | MR

[4] Ascione, J. A., Havas, G., Leedham-Green, C. R.: A computer aided classification of certain groups of prime power order. Bull. Aust. Math. Soc. 17 (1977), 257-274. | DOI | MR | JFM

[5] Bembom, T.: The Capitulation Problem in Class Field Theory: Dissertation. University of Göttingen, Göttingen (2012). | JFM

[6] Besche, H. U., Eick, B., O'Brien, E. A.: The SmallGroups Library. Available at https://www.gap-system.org/Packages/smallgrp.html

[7] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | JFM

[8] Bosma, W., Steel, A., Matthews, G., Fisher, D., Cannon, J., Contini, S., (eds.), B. Smith: Handbook of Magma Functions. Available at http://magma.maths.usyd.edu.au/magma/handbook/

[9] Boston, N., Bush, M. R., Hajir, F.: Heuristics for $p$-class towers of imaginary quadratic fields. Math. Ann. 368 (2017), 633-669. | DOI | MR | JFM

[10] Bush, M. R., Mayer, D. C.: 3-class field towers of exact length 3. J. Number Theory 147 (2015), 766-777. | DOI | MR | JFM

[11] Eick, B., Leedham-Green, C. R., Newman, M. F., O'Brien, E. A.: On the classification of groups of prime-power order by coclass: The 3-groups of coclass 2. Int. J. Algebra Comput. 23 (2013), 1243-1288. | DOI | MR | JFM

[12] Fieker, C.: Computing class fields via the Artin map. Math. Comput. 70 (2001), 1293-1303. | DOI | MR | JFM

[13] Gamble, G., Nickel, W., O'Brien, E. A., Newman, M. F.: ANU $p$-Quotient: $p$-Quotient and $p$-Group Generation Algorithms. Available at https://www.gap-system.org/Packages/anupq.html

[14] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 (1982), 1-25 German. | DOI | MR | JFM

[15] Holt, D. F., Eick, B., O'Brien, E. A.: Handbook of Computational Group Theory. Discrete Mathematics and Its Applications. Chapman and Hall/CRC Press, Boca Raton (2005). | DOI | MR | JFM

[16] Koch, H., Venkov, B. B.: Über den $p$-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers. Astérisque 24-25 (1975), 57-67 German. | MR | JFM

[17] Group, MAGMA Developer: MAGMA: Computational Algebra System, Version 2.26-10. Available at http://magma.maths.usyd.edu.au/magma/ (2021).

[18] Mayer, D. C.: Principalization in complex $S_3$-fields. Numerical Mathematics and Computing Congressus Numerantium 80. Utilitas Mathematica Publishing, Winnipeg (1991), 73-87. | MR | JFM

[19] Mayer, D. C.: Transfers of metabelian $p$-groups. Monatsh. Math. 166 (2012), 467-495. | DOI | MR | JFM

[20] Mayer, D. C.: New number fields with known $p$-class tower. Tatra Mt. Math. Publ. 64 (2015), 21-57. | DOI | MR | JFM

[21] Mayer, D. C.: Periodic bifurcations in descendant trees of finite $p$-groups. Adv. Pure Math. 5 (2015), 162-195. | DOI

[22] Mayer, D. C.: Artin transfer patterns on descendant trees of finite $p$-groups. Adv. Pure Math. 6 (2016), 66-104. | DOI

[23] Mayer, D. C.: $p$-capitulation over number fields with $p$-class rank two. J. Appl. Math. Phys. 4 (2016), 1280-1293. | DOI

[24] Mayer, D. C.: Recent progress in determining $p$-class field towers. Gulf J. Math. 4 (2016), 74-102. | DOI | MR | JFM

[25] Mayer, D. C.: Modeling rooted in-trees by finite $p$-groups. Graph Theory: Advanced Algorithms and Applications InTechOpen, London (2018), 85-113. | DOI

[26] Mayer, D. C.: Pattern recognition via Artin transfers: Applied to $p$-class field towers. 3rd International Conference on Mathematics and its Applications (ICMA) 2020 Université Hassan II, Casablanca (2020), Available at http://www.algebra.at/DCM@ICMA2020Casablanca.pdf\kern-1pt

[27] Mayer, D. C.: BCF-groups with elevated rank distribution. Available at , 22 pages. | arXiv

[28] Mayer, D. C.: First excited state with moderate rank distribution. Available at , 7 pages. | arXiv

[29] Mayer, D. C.: New perspectives of the power-commutator-structure: Coclass trees of CF-groups and related BCF-groups. Available at , 25 pages. | arXiv

[30] Mayer, D. C.: Periodic Schur $\sigma$-groups of non-elementary bicyclic type. Available at , 18 pages. | arXiv

[31] Nebelung, B.: Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem: Inauguraldissertation. Universität zu Köln, Köln (1989), German.

[32] Newman, M. F.: Determination of groups of prime-power order. Group Theory, Canberra, 1975 Lecture Notes in Mathematics 573. Springer, Berlin (1977), 73-84. | DOI | MR | JFM

[33] O'Brien, E. A.: The $p$-group generation algorithm. J. Symb. Comput. 9 (1990), 677-698. | DOI | MR | JFM

[34] Scholz, A., Taussky, O.: Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper: Ihre rechnerische Bestimmung und ihr Einflußauf den Klassenkörperturm. J. Reine Angew. Math. 171 (1934), 19-41 German \99999JFM99999 60.0126.02. | DOI | MR

[35] Shafarevich, I. R.: Extensions with given points of ramification. Am. Math. Soc., Transl., II. Ser. 59 (1966), 128-149 translation from Publ. Math., Inst. Hautes Étud. Sci. 18 1963 71-95. | DOI | MR | JFM

[36] Taussky, O.: A remark concerning Hilbert's theorem 94. J. Reine Angew. Math. 239-240 (1969), 435-438. | DOI | MR | JFM

Cité par Sources :