Keywords: Hilbert $3$-class field tower; maximal unramified pro-$3$ extension; unramified cyclic cubic extensions; Galois action; imaginary quadratic fields; bicyclic $3$-class group; punctured capitulation types; statistics; pro-$3$ groups; finite $3$-groups; generator rank; relation rank; Schur $\sigma $-groups; low index normal subgroups; kernels of Artin transfers; abelian quotient invariants; $p$-group generation algorithm; descendant trees; antitony principle
@article{10_21136_MB_2022_0127_21,
author = {Mayer, Daniel C.},
title = {Bicyclic commutator quotients with one non-elementary component},
journal = {Mathematica Bohemica},
pages = {149--180},
year = {2023},
volume = {148},
number = {2},
doi = {10.21136/MB.2022.0127-21},
mrnumber = {4585574},
zbl = {07729570},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0127-21/}
}
TY - JOUR AU - Mayer, Daniel C. TI - Bicyclic commutator quotients with one non-elementary component JO - Mathematica Bohemica PY - 2023 SP - 149 EP - 180 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0127-21/ DO - 10.21136/MB.2022.0127-21 LA - en ID - 10_21136_MB_2022_0127_21 ER -
Mayer, Daniel C. Bicyclic commutator quotients with one non-elementary component. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 149-180. doi: 10.21136/MB.2022.0127-21
[1] Arrigoni, M.: On Schur $\sigma$-groups. Math. Nachr. 192 (1998), 71-89. | DOI | MR | JFM
[2] Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Abh. Math. Semin. Univ. Hamb. 5 (1927), 353-363 German \99999JFM99999 53.0144.04. | DOI | MR
[3] Artin, E.: Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Semin. Univ. Hamb. 7 (1929), 46-51 German \99999JFM99999 55.0699.01. | DOI | MR
[4] Ascione, J. A., Havas, G., Leedham-Green, C. R.: A computer aided classification of certain groups of prime power order. Bull. Aust. Math. Soc. 17 (1977), 257-274. | DOI | MR | JFM
[5] Bembom, T.: The Capitulation Problem in Class Field Theory: Dissertation. University of Göttingen, Göttingen (2012). | JFM
[6] Besche, H. U., Eick, B., O'Brien, E. A.: The SmallGroups Library. Available at https://www.gap-system.org/Packages/smallgrp.html
[7] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | JFM
[8] Bosma, W., Steel, A., Matthews, G., Fisher, D., Cannon, J., Contini, S., (eds.), B. Smith: Handbook of Magma Functions. Available at http://magma.maths.usyd.edu.au/magma/handbook/
[9] Boston, N., Bush, M. R., Hajir, F.: Heuristics for $p$-class towers of imaginary quadratic fields. Math. Ann. 368 (2017), 633-669. | DOI | MR | JFM
[10] Bush, M. R., Mayer, D. C.: 3-class field towers of exact length 3. J. Number Theory 147 (2015), 766-777. | DOI | MR | JFM
[11] Eick, B., Leedham-Green, C. R., Newman, M. F., O'Brien, E. A.: On the classification of groups of prime-power order by coclass: The 3-groups of coclass 2. Int. J. Algebra Comput. 23 (2013), 1243-1288. | DOI | MR | JFM
[12] Fieker, C.: Computing class fields via the Artin map. Math. Comput. 70 (2001), 1293-1303. | DOI | MR | JFM
[13] Gamble, G., Nickel, W., O'Brien, E. A., Newman, M. F.: ANU $p$-Quotient: $p$-Quotient and $p$-Group Generation Algorithms. Available at https://www.gap-system.org/Packages/anupq.html
[14] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 (1982), 1-25 German. | DOI | MR | JFM
[15] Holt, D. F., Eick, B., O'Brien, E. A.: Handbook of Computational Group Theory. Discrete Mathematics and Its Applications. Chapman and Hall/CRC Press, Boca Raton (2005). | DOI | MR | JFM
[16] Koch, H., Venkov, B. B.: Über den $p$-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers. Astérisque 24-25 (1975), 57-67 German. | MR | JFM
[17] Group, MAGMA Developer: MAGMA: Computational Algebra System, Version 2.26-10. Available at http://magma.maths.usyd.edu.au/magma/ (2021).
[18] Mayer, D. C.: Principalization in complex $S_3$-fields. Numerical Mathematics and Computing Congressus Numerantium 80. Utilitas Mathematica Publishing, Winnipeg (1991), 73-87. | MR | JFM
[19] Mayer, D. C.: Transfers of metabelian $p$-groups. Monatsh. Math. 166 (2012), 467-495. | DOI | MR | JFM
[20] Mayer, D. C.: New number fields with known $p$-class tower. Tatra Mt. Math. Publ. 64 (2015), 21-57. | DOI | MR | JFM
[21] Mayer, D. C.: Periodic bifurcations in descendant trees of finite $p$-groups. Adv. Pure Math. 5 (2015), 162-195. | DOI
[22] Mayer, D. C.: Artin transfer patterns on descendant trees of finite $p$-groups. Adv. Pure Math. 6 (2016), 66-104. | DOI
[23] Mayer, D. C.: $p$-capitulation over number fields with $p$-class rank two. J. Appl. Math. Phys. 4 (2016), 1280-1293. | DOI
[24] Mayer, D. C.: Recent progress in determining $p$-class field towers. Gulf J. Math. 4 (2016), 74-102. | DOI | MR | JFM
[25] Mayer, D. C.: Modeling rooted in-trees by finite $p$-groups. Graph Theory: Advanced Algorithms and Applications InTechOpen, London (2018), 85-113. | DOI
[26] Mayer, D. C.: Pattern recognition via Artin transfers: Applied to $p$-class field towers. 3rd International Conference on Mathematics and its Applications (ICMA) 2020 Université Hassan II, Casablanca (2020), Available at http://www.algebra.at/DCM@ICMA2020Casablanca.pdf\kern-1pt
[27] Mayer, D. C.: BCF-groups with elevated rank distribution. Available at , 22 pages. | arXiv
[28] Mayer, D. C.: First excited state with moderate rank distribution. Available at , 7 pages. | arXiv
[29] Mayer, D. C.: New perspectives of the power-commutator-structure: Coclass trees of CF-groups and related BCF-groups. Available at , 25 pages. | arXiv
[30] Mayer, D. C.: Periodic Schur $\sigma$-groups of non-elementary bicyclic type. Available at , 18 pages. | arXiv
[31] Nebelung, B.: Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem: Inauguraldissertation. Universität zu Köln, Köln (1989), German.
[32] Newman, M. F.: Determination of groups of prime-power order. Group Theory, Canberra, 1975 Lecture Notes in Mathematics 573. Springer, Berlin (1977), 73-84. | DOI | MR | JFM
[33] O'Brien, E. A.: The $p$-group generation algorithm. J. Symb. Comput. 9 (1990), 677-698. | DOI | MR | JFM
[34] Scholz, A., Taussky, O.: Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper: Ihre rechnerische Bestimmung und ihr Einflußauf den Klassenkörperturm. J. Reine Angew. Math. 171 (1934), 19-41 German \99999JFM99999 60.0126.02. | DOI | MR
[35] Shafarevich, I. R.: Extensions with given points of ramification. Am. Math. Soc., Transl., II. Ser. 59 (1966), 128-149 translation from Publ. Math., Inst. Hautes Étud. Sci. 18 1963 71-95. | DOI | MR | JFM
[36] Taussky, O.: A remark concerning Hilbert's theorem 94. J. Reine Angew. Math. 239-240 (1969), 435-438. | DOI | MR | JFM
Cité par Sources :