Bicyclic commutator quotients with one non-elementary component
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 149-180.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For any number field $K$ with non-elementary $3$-class group ${\rm Cl}_3(K)\simeq C_{3^e}\times C_3$, $e\ge 2$, the punctured capitulation type $\varkappa (K)$ of $K$ in its unramified cyclic cubic extensions $L_i$, $1\le i\le 4$, is an orbit under the action of $S_3\times S_3$. By means of Artin's reciprocity law, the arithmetical invariant $\varkappa (K)$ is translated to the punctured transfer kernel type $\varkappa (G_2)$ of the automorphism group $G_2={\rm Gal}({\rm F}_3^2(K)/K)$ of the second Hilbert $3$-class field of $K$. A classification of finite $3$-groups $G$ with low order and bicyclic commutator quotient $G/G^\prime \simeq C_{3^e}\times C_3$, $2\le e\le 6$, according to the algebraic invariant $\varkappa (G)$, admits conclusions concerning the length of the Hilbert $3$-class field tower ${\rm F}_3^\infty (K)$ of imaginary quadratic number fields $K$.
DOI : 10.21136/MB.2022.0127-21
Classification : 11R11, 11R20, 11R29, 11R32, 11R37, 11Y40, 20D15, 20E18, 20E22, 20F05, 20F12, 20F14
Keywords: Hilbert $3$-class field tower; maximal unramified pro-$3$ extension; unramified cyclic cubic extensions; Galois action; imaginary quadratic fields; bicyclic $3$-class group; punctured capitulation types; statistics; pro-$3$ groups; finite $3$-groups; generator rank; relation rank; Schur $\sigma $-groups; low index normal subgroups; kernels of Artin transfers; abelian quotient invariants; $p$-group generation algorithm; descendant trees; antitony principle
@article{10_21136_MB_2022_0127_21,
     author = {Mayer, Daniel C.},
     title = {Bicyclic commutator quotients with one non-elementary component},
     journal = {Mathematica Bohemica},
     pages = {149--180},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2023},
     doi = {10.21136/MB.2022.0127-21},
     mrnumber = {4585574},
     zbl = {07729570},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0127-21/}
}
TY  - JOUR
AU  - Mayer, Daniel C.
TI  - Bicyclic commutator quotients with one non-elementary component
JO  - Mathematica Bohemica
PY  - 2023
SP  - 149
EP  - 180
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0127-21/
DO  - 10.21136/MB.2022.0127-21
LA  - en
ID  - 10_21136_MB_2022_0127_21
ER  - 
%0 Journal Article
%A Mayer, Daniel C.
%T Bicyclic commutator quotients with one non-elementary component
%J Mathematica Bohemica
%D 2023
%P 149-180
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0127-21/
%R 10.21136/MB.2022.0127-21
%G en
%F 10_21136_MB_2022_0127_21
Mayer, Daniel C. Bicyclic commutator quotients with one non-elementary component. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 149-180. doi : 10.21136/MB.2022.0127-21. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0127-21/

Cité par Sources :