Keywords: degenerate population dynamics model; Lotka-Volterra system; Carleman estimate; observability inequality; null controllability
@article{10_21136_MB_2022_0088_21,
author = {Echarroudi, Younes},
title = {Null controllability of a coupled model in population dynamics},
journal = {Mathematica Bohemica},
pages = {349--408},
year = {2023},
volume = {148},
number = {3},
doi = {10.21136/MB.2022.0088-21},
mrnumber = {4628617},
zbl = {07729581},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0088-21/}
}
TY - JOUR AU - Echarroudi, Younes TI - Null controllability of a coupled model in population dynamics JO - Mathematica Bohemica PY - 2023 SP - 349 EP - 408 VL - 148 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0088-21/ DO - 10.21136/MB.2022.0088-21 LA - en ID - 10_21136_MB_2022_0088_21 ER -
Echarroudi, Younes. Null controllability of a coupled model in population dynamics. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 349-408. doi: 10.21136/MB.2022.0088-21
[1] Ainseba, B.: Exact and approximate controllability of the age and space population dynamics structured model. J. Math. Anal. Appl. 275 (2002), 562-574. | DOI | MR | JFM
[2] Ainseba, B.: Corrigendum to ``Exact and approximate controllability of the age and space population dynamics structured model'' (J. Math. Anal. Appl. 275 (2) (2002), 562-574). J. Math. Anal. Appl. 393 (2012), 328. | DOI | MR | JFM
[3] Ainseba, B., Aniţa, S.: Local exact controllability of the age-dependent population dynamics with diffusion. Abstr. Appl. Anal. 6 (2001), 357-368. | DOI | MR | JFM
[4] Ainseba, B., Aniţa, S.: Internal exact controllability of the linear population dynamics with diffusion. Electron. J. Differ. Equ. 2004 (2004), Article ID 112, 11 pages. | MR | JFM
[5] Ainseba, B., Aniţa, S.: Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system. Nonlinear Anal., Theory Methods Appl., Ser. A 61 (2005), 491-501. | DOI | MR | JFM
[6] Ainseba, B., Echarroudi, Y., Maniar, L.: Null controllability of a population dynamics with degenerate diffusion. Differ. Integral Equ. 26 (2013), 1397-1410. | MR | JFM
[7] Ainseba, B., Langlais, M.: On a population dynamics control problem with age dependence and spatial structure. J. Math. Anal. Appl. 248 (2000), 455-474. | DOI | MR | JFM
[8] Hassi, E. M. Ait Ben, Khodja, F. Ammar, Hajjaj, A., Maniar, L.: Null controllability of degenerate parabolic cascade systems. Port. Math. (N.S.) 68 (2011), 345-367. | DOI | MR | JFM
[9] Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6 (2006), 161-204. | DOI | MR | JFM
[10] Aniţa, S.: Analysis and Control of Age-Dependent Population Dynamics. Mathematical Modelling: Theory and Applications 11. Kluwer Acadamic, Dordrecht (2000). | DOI | MR | JFM
[11] Apreutesei, N., Dimitriu, G.: On a prey-predator reaction-diffusion system with Holling type III functional response. J. Comput. Appl. Math. 235 (2010), 366-379. | DOI | MR | JFM
[12] Barbu, V., Iannelli, M., Martcheva, M.: On the controllability of the Lotka-McKendrick model of population dynamics. J. Math. Anal. Appl. 253 (2001), 142-165. | DOI | MR | JFM
[13] Boutaayamou, I., Echarroudi, Y.: Null controllability of population dynamics with interior degeneracy. Electron. J. Differ. Equ. 2017 (2017), Article ID 131, 21 pages. | MR | JFM
[14] Boutaayamou, I., Fragnelli, G.: A degenerate population system: Carleman estimates and controllability. Nonlinear Anal., Theory Methods Appl., Ser. A 195 (2020), Article ID 111742, 29 pages. | DOI | MR | JFM
[15] Boutaayamou, I., Salhi, J.: Null controllability for linear parabolic cascade systems with interior degeneracy. Electron. J. Differ. Equ. 2016 (2016), Article ID 305, 22 pages. | MR | JFM
[16] Cabello, T., Gámez, M., Varga, Z.: An improvement of the Holling type III functional response in entomophagous species model. J. Biol. Syst. 15 (2007), 515-524. | DOI | JFM
[17] Campiti, M., Metafune, G., Pallara, D.: Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57 (1998), 1-36. | DOI | MR | JFM
[18] Cannarsa, P., Fragnelli, G.: Null controllability of semilinear degenerate parabolic equations in bounded domains. Electron. J. Differ. Equ. 2006 (2006), Article ID 136, 20 pages. | MR | JFM
[19] Cannarsa, P., Fragnelli, G., Rocchetti, D.: Null controllability of degenerate parabolic with drift. Netw. Heterog. Media 2 (2007), 695-715. | DOI | MR | JFM
[20] Cannarsa, P., Fragnelli, G., Rocchetti, D.: Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. J. Evol. Equ. 8 (2008), 583-616. | DOI | MR | JFM
[21] Cannarsa, P., Fragnelli, G., Vancostenoble, J.: Linear degenerate parabolic equations in bounded domains: Controllability and observability. Systems, Control, Modeling and Optimization IFIP International Federation for Information Processing 202. Springer, New York (2006), 163-173. | DOI | MR | JFM
[22] Cannarsa, P., Fragnelli, G., Vancostenoble, J.: Regional controllability of semilinear degenerate parabolic equations in bounded domains. J. Math. Anal. Appl. 320 (2006), 804-818. | DOI | MR | JFM
[23] Cannarsa, P., Martinez, P., Vancostenoble, J.: Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal. 3 (2004), 607-635. | DOI | MR | JFM
[24] Cannarsa, P., Martinez, P., Vancostenoble, J.: Null controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2005), 153-190. | MR | JFM
[25] Dawes, J. H. P., Souza, M. O.: A derivation of Holling's type I, II and III functional responses in predator-prey systems. J. Theor. Biol. 327 (2013), 11-22. | DOI | MR | JFM
[26] Echarroudi, Y., Maniar, L.: Null controllability of a model in population dynamics. Electron. J. Differ. Equ. 2014 (2014), Article ID 240, 20 pages. | MR | JFM
[27] Echarroudi, Y., Maniar, L.: Null controllability of a degenerate cascade model in population dynamics. Studies in Evolution Equations and Related Topics STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham (2021), 211-268. | DOI | MR | JFM
[28] Fragnelli, G.: An age-dependent population equation with diffusion and delayed birth process. Int. J. Math. Math. Sci. 2005 (2005), 3273-3289. | DOI | MR | JFM
[29] Fragnelli, G.: Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 687-701. | DOI | MR | JFM
[30] Fragnelli, G.: Carleman estimates and null controllability for a degenerate population model. J. Math. Pures Appl. (9) 115 (2018), 74-126. | DOI | MR | JFM
[31] Fragnelli, G.: Null controllability for a degenerate population model in divergence form via Carleman estimates. Adv. Nonlinear Anal. 9 (2020), 1102-1129. | DOI | MR | JFM
[32] Fragnelli, G., Idrissi, A., Maniar, L.: The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 735-754. | DOI | MR | JFM
[33] Fragnelli, G., Martinez, P., Vancostenoble, J.: Qualitative properties of a population dynamics system describing pregnancy. Math. Models Methods Appl. Sci. 15 (2005), 507-554. | DOI | MR | JFM
[34] Fragnelli, G., Mugnai, D.: Carleman estimates and observability inequalities for parabolic equations with interior degeneracy. Adv. Nonlinear Anal. 2 (2013), 339-378. | DOI | MR | JFM
[35] Fragnelli, G., Mugnai, D.: Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations. Mem. Am. Math. Soc. 1146 (2016), 88 pages. | DOI | MR | JFM
[36] Fragnelli, G., Tonetto, L.: A population equation with diffusion. J. Math. Anal. Appl. 289 (2004), 90-99. | DOI | MR | JFM
[37] Fursikov, A. V., Imanuvilov, O. Y.: Controllability of Evolutions Equations. Lecture Notes Series, Seoul 34. Seoul National University, Seoul (1996). | MR | JFM
[38] Hajjaj, A., Maniar, L., Salhi, J.: Carleman estimates and null controllability of degenerate/singular parabolic systems. Electron. J. Differ. Equ. 2016 (2016), Article ID 292, 25 pages. | MR | JFM
[39] Hegoburu, N., Tucsnak, M.: Null controllability of the Lotka-Mckendrick system with spatial diffusion. Math. Control Relat. Fields 8 (2018), 707-720. | DOI | MR | JFM
[40] Jia, Y., Wu, J., Xu, H.-K.: Positive solutions of a Lotka-Volterra competition model with cross-diffusion. Comput. Math. Appl. 68 (2014), 1220-1228. | DOI | MR | JFM
[41] Juska, A., Gouveia, L., Gabriel, J., Koneck, S.: Negotiating bacteriological meat contamination standards in the US: The case of $\it E. Coli$ O157:H7. Sociologia Ruralis 40 (2000), 249-271. | DOI
[42] Kooij, R. E., Zegeling, A.: A predator-prey model with Ivlev's functional response. J. Math. Anal. Appl. 198 (1996), 473-489. | DOI | MR | JFM
[43] Langlais, M.: A nonlinear problem in age-dependent population diffusion. SIAM J. Math. Anal. 16 (1985), 510-529. | DOI | MR | JFM
[44] Liu, B., Zhang, Y., Chen, L.: Dynamics complexities of a Holling I predator-prey model concerning periodic biological and chemical control. Chaos Solitons Fractals 22 (2004), 123-134. | DOI | MR | JFM
[45] Liu, X., Huang, Q.: The dynamics of a harvested predator-prey system with Holling type IV functional response. Biosystems 169-170 (2018), 26-39. | DOI
[46] Mozorov, A. Y.: Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling. J. Theor. Biol. 265 (2010), 45-54. | DOI | MR | JFM
[47] Pavel, L.: Classical solutions in Sobolev spaces for a class of hyperbolic Lotka-Volterra systems. SIAM J. Control Optim. 51 (2013), 2132-2151. | DOI | MR | JFM
[48] Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case. J. Differ. Equations 247 (2009), 866-886. | DOI | MR | JFM
[49] Piazzera, S.: An age-dependent population equation with delayed birth process. Math. Methods Appl. Sci. 27 (2004), 427-439. | DOI | MR | JFM
[50] Pozio, M. A., Tesei, A.: Degenerate parabolic problems in population dynamics. Japan J. Appl. Math. 2 (1985), 351-380. | DOI | MR
[51] Pugliese, A., Tonetto, L.: Well-posedness of an infinite system of partial differential equations modelling parasitic infection in age-structured host. J. Math. Anal. Appl. 284 (2003), 144-164. | DOI | MR | JFM
[52] Rhandi, A., Schnaubelt, R.: Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete Contin. Dyn. Syst. 5 (1999), 663-683. | DOI | MR | JFM
[53] Salhi, J.: Null controllability for a coupled system of degenerate/singular parabolic equations in nondivergence form. Electron. J. Qual. Theory Differ. Equ. 2018 (2018), Article ID 31, 28 pages. | DOI | MR | JFM
[54] Seo, G., DeAngelis, D. L.: A predator-prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21 (2011), 811-833. | DOI | MR | JFM
[55] Skalski, G. T., Gilliam, J. F.: Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology 82 (2001), 3083-3092. | DOI
[56] Traore, O.: Null controllability of a nonlinear population dynamics problem. Int. J. Math. Math. Sci. 2006 (2006), Article ID 49279, 20 pages. | DOI | MR | JFM
[57] Wang, W., Zhang, L., Wang, H., Li, Z.: Pattern formation of a predator-prey system with Ivlev-type functional response. Ecological Modelling 221 (2010), 131-140. | DOI | MR
[58] Webb, G. F.: Population models structured by age, size, and spatial position. Structured Population Models in Biology and Epidemiology Lecture Notes in Mathematics 1936. Springer, Berlin (2008), 1-49. | DOI | MR
[59] Zhang, Y., Xu, Z., Liu, B., Chen, L.: Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control. J. Biol. Syst. 13 (2005), 45-58. | DOI | JFM
[60] Zhao, C., Wang, M., Zhao, P.: Optimal control of harvesting for age-dependent predator-prey system. Math. Comput. Modelling 42 (2005), 573-584. | DOI | MR | JFM
Cité par Sources :