The unit groups of semisimple group algebras of some non-metabelian groups of order $144$
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 631-646.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider all the non-metabelian groups $G$ of order $144$ that have exponent either $36$ or $72$ and deduce the unit group $U(\mathbb {F}_qG)$ of semisimple group algebra $\mathbb {F}_qG$. Here, $q$ denotes the power of a prime, i.e., $q=p^r$ for $p$ prime and a positive integer $r$. Up to isomorphism, there are $6$ groups of order $144$ that have exponent either $36$ or $72$. Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order $144$ that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of $17$ non-metabelian groups.\looseness -1
DOI : 10.21136/MB.2022.0067-22
Classification : 16U60, 20C05
Keywords: unit group; finite field; Wedderburn decomposition
@article{10_21136_MB_2022_0067_22,
     author = {Mittal, Gaurav and Sharma, Rajendra Kumar},
     title = {The unit groups of semisimple group algebras of some non-metabelian groups of order $144$},
     journal = {Mathematica Bohemica},
     pages = {631--646},
     publisher = {mathdoc},
     volume = {148},
     number = {4},
     year = {2023},
     doi = {10.21136/MB.2022.0067-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0067-22/}
}
TY  - JOUR
AU  - Mittal, Gaurav
AU  - Sharma, Rajendra Kumar
TI  - The unit groups of semisimple group algebras of some non-metabelian groups of order $144$
JO  - Mathematica Bohemica
PY  - 2023
SP  - 631
EP  - 646
VL  - 148
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0067-22/
DO  - 10.21136/MB.2022.0067-22
LA  - en
ID  - 10_21136_MB_2022_0067_22
ER  - 
%0 Journal Article
%A Mittal, Gaurav
%A Sharma, Rajendra Kumar
%T The unit groups of semisimple group algebras of some non-metabelian groups of order $144$
%J Mathematica Bohemica
%D 2023
%P 631-646
%V 148
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0067-22/
%R 10.21136/MB.2022.0067-22
%G en
%F 10_21136_MB_2022_0067_22
Mittal, Gaurav; Sharma, Rajendra Kumar. The unit groups of semisimple group algebras of some non-metabelian groups of order $144$. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 631-646. doi : 10.21136/MB.2022.0067-22. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0067-22/

Cité par Sources :