Endomorphism kernel property for finite groups
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 347-358
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A group $G$ has the endomorphism kernel property (EKP) if every congruence relation $\theta $ on $G$ is the kernel of an endomorphism on $G$. In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP.
DOI :
10.21136/MB.2021.0171-20
Classification :
08A35, 20D15, 20K01, 20K27, 20K30
Keywords: endomorphism kernel property; nilpotent group; $p$-group
Keywords: endomorphism kernel property; nilpotent group; $p$-group
@article{10_21136_MB_2021_0171_20,
author = {Ghumashyan, Heghine and Guri\v{c}an, Jaroslav},
title = {Endomorphism kernel property for finite groups},
journal = {Mathematica Bohemica},
pages = {347--358},
publisher = {mathdoc},
volume = {147},
number = {3},
year = {2022},
doi = {10.21136/MB.2021.0171-20},
mrnumber = {4482310},
zbl = {07584129},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0171-20/}
}
TY - JOUR AU - Ghumashyan, Heghine AU - Guričan, Jaroslav TI - Endomorphism kernel property for finite groups JO - Mathematica Bohemica PY - 2022 SP - 347 EP - 358 VL - 147 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0171-20/ DO - 10.21136/MB.2021.0171-20 LA - en ID - 10_21136_MB_2021_0171_20 ER -
%0 Journal Article %A Ghumashyan, Heghine %A Guričan, Jaroslav %T Endomorphism kernel property for finite groups %J Mathematica Bohemica %D 2022 %P 347-358 %V 147 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0171-20/ %R 10.21136/MB.2021.0171-20 %G en %F 10_21136_MB_2021_0171_20
Ghumashyan, Heghine; Guričan, Jaroslav. Endomorphism kernel property for finite groups. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 347-358. doi: 10.21136/MB.2021.0171-20
Cité par Sources :