Lucas sequences and repdigits
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 301-318
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(G_{n})_{n \geq 1}$ be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are $\{U_n\}$ and $\{V_n\}$, respectively. We show that the Diophantine equation $G_n=B \cdot (g^{lm}-1)/(g^{l}-1)$ has only finitely many solutions in $n, m \in \mathbb {Z}^+$, where $g \geq 2$, $l$ is even and $1 \leq B \leq g^{l}-1$. Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on such curves, we conclude the finiteness result. In fact, we show this result in detail in the case of $G_n=U_n$, and the remaining case can be handled in a similar way. We apply our result to the sequences of Fibonacci numbers $\{F_n\}$ and Pell numbers $\{P_n\}$. Furthermore, with the first application we determine all the solutions $(n,m,g,B,l)$ of the equation $F_n=B \cdot (g^{lm}-1)/(g^l-1)$, where $2 \leq g \leq 9$ and $l=1$.
Let $(G_{n})_{n \geq 1}$ be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are $\{U_n\}$ and $\{V_n\}$, respectively. We show that the Diophantine equation $G_n=B \cdot (g^{lm}-1)/(g^{l}-1)$ has only finitely many solutions in $n, m \in \mathbb {Z}^+$, where $g \geq 2$, $l$ is even and $1 \leq B \leq g^{l}-1$. Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on such curves, we conclude the finiteness result. In fact, we show this result in detail in the case of $G_n=U_n$, and the remaining case can be handled in a similar way. We apply our result to the sequences of Fibonacci numbers $\{F_n\}$ and Pell numbers $\{P_n\}$. Furthermore, with the first application we determine all the solutions $(n,m,g,B,l)$ of the equation $F_n=B \cdot (g^{lm}-1)/(g^l-1)$, where $2 \leq g \leq 9$ and $l=1$.
DOI : 10.21136/MB.2021.0155-20
Classification : 11A63, 11B37, 11B39, 11D72, 11J86
Keywords: Diophantine equation; Lucas sequence; repdigit; elliptic curve
@article{10_21136_MB_2021_0155_20,
     author = {Hashim, Hayder Raheem and Tengely, Szabolcs},
     title = {Lucas sequences and repdigits},
     journal = {Mathematica Bohemica},
     pages = {301--318},
     year = {2022},
     volume = {147},
     number = {3},
     doi = {10.21136/MB.2021.0155-20},
     mrnumber = {4482307},
     zbl = {07584126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0155-20/}
}
TY  - JOUR
AU  - Hashim, Hayder Raheem
AU  - Tengely, Szabolcs
TI  - Lucas sequences and repdigits
JO  - Mathematica Bohemica
PY  - 2022
SP  - 301
EP  - 318
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0155-20/
DO  - 10.21136/MB.2021.0155-20
LA  - en
ID  - 10_21136_MB_2021_0155_20
ER  - 
%0 Journal Article
%A Hashim, Hayder Raheem
%A Tengely, Szabolcs
%T Lucas sequences and repdigits
%J Mathematica Bohemica
%D 2022
%P 301-318
%V 147
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0155-20/
%R 10.21136/MB.2021.0155-20
%G en
%F 10_21136_MB_2021_0155_20
Hashim, Hayder Raheem; Tengely, Szabolcs. Lucas sequences and repdigits. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 301-318. doi: 10.21136/MB.2021.0155-20

[1] Adegbindin, C., Luca, F., Togbé, A.: Lucas numbers as sums of two repdigits. Lith. Math. J. 59 (2019), 295-304. | DOI | MR | JFM

[2] Alekseyev, M. A., Tengely, S.: On integral points on biquadratic curves and near-multiples of squares in Lucas sequences. J. Integer Seq. 17 (2014), Article ID 14.6.6, 15 pages. | MR | JFM

[3] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$. J. Lond. Math. Soc. 43 (1968), 1-9. | DOI | MR | JFM

[4] Baker, A.: Bounds for the solutions of the hyperelliptic equation. Proc. Camb. Philos. Soc. 65 (1969), 439-444. | DOI | MR | JFM

[5] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I: The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | JFM

[6] Bravo, J. J., Luca, F.: Repdigits as sums of two $k$-Fibonacci numbers. Monatsh. Math. 176 (2015), 31-51. | DOI | MR | JFM

[7] Brindza, B.: On $S$-integral solutions of the equation $y^m=f(x)$. Acta Math. Hung. 44 (1984), 133-139. | DOI | MR | JFM

[8] Bugeaud, Y.: Bounds for the solutions of superelliptic equations. Compos. Math. 107 (1997), 187-219. | DOI | MR | JFM

[9] Bugeaud, Y., Mignotte, M.: On integers with identical digits. Mathematika 46 (1999), 411-417. | DOI | MR | JFM

[10] Alvarado, S. Díaz, Luca, F.: Fibonacci numbers which are sums of two repdigits. Proceedings of the 14th International Conference on Fibonacci Numbers and Their Applications Sociedad Matemática Mexicana, Mexico (2011), 97-108. | MR | JFM

[11] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. | DOI | MR | JFM

[12] Faye, B., Luca, F.: Pell and Pell-Lucas numbers with only one distinct digit. Ann. Math. Inform. 45 (2015), 55-60. | MR | JFM

[13] Gebel, J., Pethő, A., Zimmer, H. G.: Computing integral points on elliptic curves. Acta Arith. 68 (1994), 171-192. | DOI | MR | JFM

[14] Hajdu, L., Herendi, T.: Explicit bounds for the solutions of elliptic equations with rational coefficients. J. Symb. Comput. 25 (1998), 361-366. | DOI | MR | JFM

[15] Jones, L., Marques, D., Togbé, A.: On terms of Lucas sequences with only one distinct digit. Indian J. Math. 57 (2015), 151-164. | MR | JFM

[16] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 57 (2000), 243-254. | MR | JFM

[17] Marques, D., Togbé, A.: On terms of linear recurrence sequences with only one distinct block of digits. Colloq. Math. 124 (2011), 145-155. | DOI | MR | JFM

[18] Marques, D., Togbé, A.: On repdigits as product of consecutive Fibonacci numbers. Rend. Ist. Mat. Univ. Trieste 44 (2012), 393-397. | MR | JFM

[19] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217-1269. | DOI | MR | JFM

[20] Obláth, R.: Une propriété des puissances parfaites. Mathesis 65 (1956), 356-364 French. | MR | JFM

[21] Ribenboim, P.: My Numbers, My Friends: Popular Lectures on Number Theory. Springer, New York (2000). | DOI | MR | JFM

[22] Shorey, T. N., Tijdeman, R.: Exponential Diophantine Equations. Cambridge Tracts in Mathematics 87. Cambridge University Press, Cambridge (1986). | DOI | MR | JFM

[23] Şiar, Z., Erduvan, F., Keskin, R.: Repdigits as product of two Pell or Pell-Lucas numbers. Acta Math. Univ. Comen., New Ser. 88 (2019), 247-256. | MR | JFM

[24] Sprindžuk, V. G.: Classical Diophantine Equations. Lecture Notes in Mathematics 1559. Springer, Berlin (1993). | DOI | MR | JFM

[25] al., W. A. Stein et: SageMath (Version 9.0). Available at https://www.sagemath.org/

[26] Stroeker, R. J., Tzanakis, N.: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 67 (1994), 177-196. | DOI | MR | JFM

[27] Tzanakis, N.: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms: The case of quartic equations. Acta Arith. 75 (1996), 165-190. | DOI | MR | JFM

Cité par Sources :