Lucas sequences and repdigits
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 301-318.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(G_{n})_{n \geq 1}$ be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are $\{U_n\}$ and $\{V_n\}$, respectively. We show that the Diophantine equation $G_n=B \cdot (g^{lm}-1)/(g^{l}-1)$ has only finitely many solutions in $n, m \in \mathbb {Z}^+$, where $g \geq 2$, $l$ is even and $1 \leq B \leq g^{l}-1$. Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on such curves, we conclude the finiteness result. In fact, we show this result in detail in the case of $G_n=U_n$, and the remaining case can be handled in a similar way. We apply our result to the sequences of Fibonacci numbers $\{F_n\}$ and Pell numbers $\{P_n\}$. Furthermore, with the first application we determine all the solutions $(n,m,g,B,l)$ of the equation $F_n=B \cdot (g^{lm}-1)/(g^l-1)$, where $2 \leq g \leq 9$ and $l=1$.
DOI : 10.21136/MB.2021.0155-20
Classification : 11A63, 11B37, 11B39, 11D72, 11J86
Keywords: Diophantine equation; Lucas sequence; repdigit; elliptic curve
@article{10_21136_MB_2021_0155_20,
     author = {Hashim, Hayder Raheem and Tengely, Szabolcs},
     title = {Lucas sequences and repdigits},
     journal = {Mathematica Bohemica},
     pages = {301--318},
     publisher = {mathdoc},
     volume = {147},
     number = {3},
     year = {2022},
     doi = {10.21136/MB.2021.0155-20},
     mrnumber = {4482307},
     zbl = {07584126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0155-20/}
}
TY  - JOUR
AU  - Hashim, Hayder Raheem
AU  - Tengely, Szabolcs
TI  - Lucas sequences and repdigits
JO  - Mathematica Bohemica
PY  - 2022
SP  - 301
EP  - 318
VL  - 147
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0155-20/
DO  - 10.21136/MB.2021.0155-20
LA  - en
ID  - 10_21136_MB_2021_0155_20
ER  - 
%0 Journal Article
%A Hashim, Hayder Raheem
%A Tengely, Szabolcs
%T Lucas sequences and repdigits
%J Mathematica Bohemica
%D 2022
%P 301-318
%V 147
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0155-20/
%R 10.21136/MB.2021.0155-20
%G en
%F 10_21136_MB_2021_0155_20
Hashim, Hayder Raheem; Tengely, Szabolcs. Lucas sequences and repdigits. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 301-318. doi : 10.21136/MB.2021.0155-20. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0155-20/

Cité par Sources :