Keywords: Diophantine equation; Lucas sequence; repdigit; elliptic curve
@article{10_21136_MB_2021_0155_20,
author = {Hashim, Hayder Raheem and Tengely, Szabolcs},
title = {Lucas sequences and repdigits},
journal = {Mathematica Bohemica},
pages = {301--318},
year = {2022},
volume = {147},
number = {3},
doi = {10.21136/MB.2021.0155-20},
mrnumber = {4482307},
zbl = {07584126},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0155-20/}
}
TY - JOUR AU - Hashim, Hayder Raheem AU - Tengely, Szabolcs TI - Lucas sequences and repdigits JO - Mathematica Bohemica PY - 2022 SP - 301 EP - 318 VL - 147 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0155-20/ DO - 10.21136/MB.2021.0155-20 LA - en ID - 10_21136_MB_2021_0155_20 ER -
Hashim, Hayder Raheem; Tengely, Szabolcs. Lucas sequences and repdigits. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 301-318. doi: 10.21136/MB.2021.0155-20
[1] Adegbindin, C., Luca, F., Togbé, A.: Lucas numbers as sums of two repdigits. Lith. Math. J. 59 (2019), 295-304. | DOI | MR | JFM
[2] Alekseyev, M. A., Tengely, S.: On integral points on biquadratic curves and near-multiples of squares in Lucas sequences. J. Integer Seq. 17 (2014), Article ID 14.6.6, 15 pages. | MR | JFM
[3] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$. J. Lond. Math. Soc. 43 (1968), 1-9. | DOI | MR | JFM
[4] Baker, A.: Bounds for the solutions of the hyperelliptic equation. Proc. Camb. Philos. Soc. 65 (1969), 439-444. | DOI | MR | JFM
[5] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I: The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | JFM
[6] Bravo, J. J., Luca, F.: Repdigits as sums of two $k$-Fibonacci numbers. Monatsh. Math. 176 (2015), 31-51. | DOI | MR | JFM
[7] Brindza, B.: On $S$-integral solutions of the equation $y^m=f(x)$. Acta Math. Hung. 44 (1984), 133-139. | DOI | MR | JFM
[8] Bugeaud, Y.: Bounds for the solutions of superelliptic equations. Compos. Math. 107 (1997), 187-219. | DOI | MR | JFM
[9] Bugeaud, Y., Mignotte, M.: On integers with identical digits. Mathematika 46 (1999), 411-417. | DOI | MR | JFM
[10] Alvarado, S. Díaz, Luca, F.: Fibonacci numbers which are sums of two repdigits. Proceedings of the 14th International Conference on Fibonacci Numbers and Their Applications Sociedad Matemática Mexicana, Mexico (2011), 97-108. | MR | JFM
[11] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. | DOI | MR | JFM
[12] Faye, B., Luca, F.: Pell and Pell-Lucas numbers with only one distinct digit. Ann. Math. Inform. 45 (2015), 55-60. | MR | JFM
[13] Gebel, J., Pethő, A., Zimmer, H. G.: Computing integral points on elliptic curves. Acta Arith. 68 (1994), 171-192. | DOI | MR | JFM
[14] Hajdu, L., Herendi, T.: Explicit bounds for the solutions of elliptic equations with rational coefficients. J. Symb. Comput. 25 (1998), 361-366. | DOI | MR | JFM
[15] Jones, L., Marques, D., Togbé, A.: On terms of Lucas sequences with only one distinct digit. Indian J. Math. 57 (2015), 151-164. | MR | JFM
[16] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 57 (2000), 243-254. | MR | JFM
[17] Marques, D., Togbé, A.: On terms of linear recurrence sequences with only one distinct block of digits. Colloq. Math. 124 (2011), 145-155. | DOI | MR | JFM
[18] Marques, D., Togbé, A.: On repdigits as product of consecutive Fibonacci numbers. Rend. Ist. Mat. Univ. Trieste 44 (2012), 393-397. | MR | JFM
[19] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217-1269. | DOI | MR | JFM
[20] Obláth, R.: Une propriété des puissances parfaites. Mathesis 65 (1956), 356-364 French. | MR | JFM
[21] Ribenboim, P.: My Numbers, My Friends: Popular Lectures on Number Theory. Springer, New York (2000). | DOI | MR | JFM
[22] Shorey, T. N., Tijdeman, R.: Exponential Diophantine Equations. Cambridge Tracts in Mathematics 87. Cambridge University Press, Cambridge (1986). | DOI | MR | JFM
[23] Şiar, Z., Erduvan, F., Keskin, R.: Repdigits as product of two Pell or Pell-Lucas numbers. Acta Math. Univ. Comen., New Ser. 88 (2019), 247-256. | MR | JFM
[24] Sprindžuk, V. G.: Classical Diophantine Equations. Lecture Notes in Mathematics 1559. Springer, Berlin (1993). | DOI | MR | JFM
[25] al., W. A. Stein et: SageMath (Version 9.0). Available at https://www.sagemath.org/
[26] Stroeker, R. J., Tzanakis, N.: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 67 (1994), 177-196. | DOI | MR | JFM
[27] Tzanakis, N.: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms: The case of quartic equations. Acta Arith. 75 (1996), 165-190. | DOI | MR | JFM
Cité par Sources :