Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 471-481.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_{K}$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.
DOI : 10.21136/MB.2021.0131-19
Classification : 11R16, 11S15
Keywords: ramification; cyclic quartic field; discriminant; index
@article{10_21136_MB_2021_0131_19,
     author = {P\'erez-Hern\'andez, Julio and Pineda-Ruelas, Mario},
     title = {Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$},
     journal = {Mathematica Bohemica},
     pages = {471--481},
     publisher = {mathdoc},
     volume = {146},
     number = {4},
     year = {2021},
     doi = {10.21136/MB.2021.0131-19},
     mrnumber = {4336551},
     zbl = {07442514},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0131-19/}
}
TY  - JOUR
AU  - Pérez-Hernández, Julio
AU  - Pineda-Ruelas, Mario
TI  - Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
JO  - Mathematica Bohemica
PY  - 2021
SP  - 471
EP  - 481
VL  - 146
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0131-19/
DO  - 10.21136/MB.2021.0131-19
LA  - en
ID  - 10_21136_MB_2021_0131_19
ER  - 
%0 Journal Article
%A Pérez-Hernández, Julio
%A Pineda-Ruelas, Mario
%T Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
%J Mathematica Bohemica
%D 2021
%P 471-481
%V 146
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0131-19/
%R 10.21136/MB.2021.0131-19
%G en
%F 10_21136_MB_2021_0131_19
Pérez-Hernández, Julio; Pineda-Ruelas, Mario. Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 471-481. doi : 10.21136/MB.2021.0131-19. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0131-19/

Cité par Sources :