Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 471-481
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_{K}$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.
DOI :
10.21136/MB.2021.0131-19
Classification :
11R16, 11S15
Keywords: ramification; cyclic quartic field; discriminant; index
Keywords: ramification; cyclic quartic field; discriminant; index
@article{10_21136_MB_2021_0131_19,
author = {P\'erez-Hern\'andez, Julio and Pineda-Ruelas, Mario},
title = {Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$},
journal = {Mathematica Bohemica},
pages = {471--481},
publisher = {mathdoc},
volume = {146},
number = {4},
year = {2021},
doi = {10.21136/MB.2021.0131-19},
mrnumber = {4336551},
zbl = {07442514},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0131-19/}
}
TY - JOUR AU - Pérez-Hernández, Julio AU - Pineda-Ruelas, Mario TI - Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$ JO - Mathematica Bohemica PY - 2021 SP - 471 EP - 481 VL - 146 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0131-19/ DO - 10.21136/MB.2021.0131-19 LA - en ID - 10_21136_MB_2021_0131_19 ER -
%0 Journal Article %A Pérez-Hernández, Julio %A Pineda-Ruelas, Mario %T Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$ %J Mathematica Bohemica %D 2021 %P 471-481 %V 146 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0131-19/ %R 10.21136/MB.2021.0131-19 %G en %F 10_21136_MB_2021_0131_19
Pérez-Hernández, Julio; Pineda-Ruelas, Mario. Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 471-481. doi: 10.21136/MB.2021.0131-19
Cité par Sources :