On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$
Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 1-10
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give the characterization of the unit group of $\mathbb {F}_qSL(2, \mathbb {Z}_5)$, where $\mathbb {F}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb {Z}_5)$ denotes the special linear group of $2 \times 2$ matrices having determinant $1$ over the cyclic group $\mathbb {Z}_5$.
We give the characterization of the unit group of $\mathbb {F}_qSL(2, \mathbb {Z}_5)$, where $\mathbb {F}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb {Z}_5)$ denotes the special linear group of $2 \times 2$ matrices having determinant $1$ over the cyclic group $\mathbb {Z}_5$.
DOI : 10.21136/MB.2021.0104-20
Classification : 16U60, 20C05
Keywords: unit group; finite field; Wedderburn decomposition
@article{10_21136_MB_2021_0104_20,
     author = {Sharma, Rajendra K. and Mittal, Gaurav},
     title = {On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$},
     journal = {Mathematica Bohemica},
     pages = {1--10},
     year = {2022},
     volume = {147},
     number = {1},
     doi = {10.21136/MB.2021.0104-20},
     mrnumber = {4387464},
     zbl = {07547237},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-20/}
}
TY  - JOUR
AU  - Sharma, Rajendra K.
AU  - Mittal, Gaurav
TI  - On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$
JO  - Mathematica Bohemica
PY  - 2022
SP  - 1
EP  - 10
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-20/
DO  - 10.21136/MB.2021.0104-20
LA  - en
ID  - 10_21136_MB_2021_0104_20
ER  - 
%0 Journal Article
%A Sharma, Rajendra K.
%A Mittal, Gaurav
%T On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$
%J Mathematica Bohemica
%D 2022
%P 1-10
%V 147
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-20/
%R 10.21136/MB.2021.0104-20
%G en
%F 10_21136_MB_2021_0104_20
Sharma, Rajendra K.; Mittal, Gaurav. On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 1-10. doi: 10.21136/MB.2021.0104-20

[1] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$. Can. Math. Bull. 54 (2011), 237-243. | DOI | MR | JFM

[2] Ferraz, R. A.: Simple components of the center of $FG/J(FG)$. Commun. Algebra 36 (2008), 3191-3199. | DOI | MR | JFM

[3] Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}A_4$. Czech. Math. J. 61 (2011), 531-539. | DOI | MR | JFM

[4] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order 12 over any finite field of characteristic 3. Algebra Discrete Math. 11 (2011), 46-58. | MR | JFM

[5] Hurley, T.: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31 (2006), 319-335. | MR | JFM

[6] Hurley, T.: Convolutional codes from units in matrix and group rings. Int. J. Pure Appl. Math. 50 (2009), 431-463. | MR | JFM

[7] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994). | DOI | MR | JFM

[8] Maheshwari, S., Sharma, R. K.: The unit group of group algebra $F_qSL(2;Z_3)$. J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. | DOI | MR | JFM

[9] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on units of $F_{p^m}[D_{2p^m}]$. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 30 (2014), 17-25. | MR | JFM

[10] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of algebra of circulant matrices. Int. J. Group Theory 3 (2014), 13-16. | DOI | MR | JFM

[11] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of $F_q[D_{30}]$. Serdica Math. J. 41 (2015), 185-198. | MR

[12] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on the structure of $F_{p^k}A_5/J(F_{p^k}A_5)$. Acta Sci. Math. 82 (2016), 29-43. | DOI | MR | JFM

[13] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of some special semi-simple group algebras. Quaest. Math. 39 (2016), 9-28. | DOI | MR | JFM

[14] Makhijani, N., Sharma, R. K., Srivastava, J. B.: Units in finite dihedral and quaternion group algebras. J. Egypt. Math. Soc. 24 (2016), 5-7. | DOI | MR | JFM

[15] Mittal, G., Sharma, R.: On unit group of finite semisimple group algebras of nonmetabelian groups upto order 72. Math. Bohem. 146 (2021), 429-455. | DOI | MR

[16] Perlis, S., Walker, G. L.: Abelian group algebras of finite order. Trans. Am. Math. Soc. 68 (1950), 420-426. | DOI | MR | JFM

[17] Milies, C. Polcino, Sehgal, S. K., Sudarshan, S.: An Introduction to Group Rings. Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht (2002). | DOI | MR | JFM

[18] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$. Publ. Math. 71 (2007), 21-26. | MR | JFM

[19] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FS_3$. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 23 (2007), 129-142. | MR | JFM

[20] Sharma, R. K., Yadav, P.: Unit group of algebra of circulant matrices. Int. J. Group Theory 2 (2013), 1-6. | MR | JFM

[21] Tang, G., Wei, Y., Li, Y.: Unit groups of group algebras of some small groups. Czech. Math. J. 64 (2014), 149-157. | DOI | MR | JFM

Cité par Sources :