On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$
Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give the characterization of the unit group of $\mathbb {F}_qSL(2, \mathbb {Z}_5)$, where $\mathbb {F}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb {Z}_5)$ denotes the special linear group of $2 \times 2$ matrices having determinant $1$ over the cyclic group $\mathbb {Z}_5$.
DOI : 10.21136/MB.2021.0104-20
Classification : 16U60, 20C05
Keywords: unit group; finite field; Wedderburn decomposition
@article{10_21136_MB_2021_0104_20,
     author = {Sharma, Rajendra K. and Mittal, Gaurav},
     title = {On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$},
     journal = {Mathematica Bohemica},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2022},
     doi = {10.21136/MB.2021.0104-20},
     mrnumber = {4387464},
     zbl = {07547237},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-20/}
}
TY  - JOUR
AU  - Sharma, Rajendra K.
AU  - Mittal, Gaurav
TI  - On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$
JO  - Mathematica Bohemica
PY  - 2022
SP  - 1
EP  - 10
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-20/
DO  - 10.21136/MB.2021.0104-20
LA  - en
ID  - 10_21136_MB_2021_0104_20
ER  - 
%0 Journal Article
%A Sharma, Rajendra K.
%A Mittal, Gaurav
%T On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$
%J Mathematica Bohemica
%D 2022
%P 1-10
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-20/
%R 10.21136/MB.2021.0104-20
%G en
%F 10_21136_MB_2021_0104_20
Sharma, Rajendra K.; Mittal, Gaurav. On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 1-10. doi : 10.21136/MB.2021.0104-20. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-20/

Cité par Sources :