Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 419-434
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, $\xi $-projectively flat, $M$-projectively flat, $\xi $-$M$-projectively flat, pseudo projectively flat and $\xi $-pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat, concircularly flat, $M$-projectively flat and pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting the aforesaid connection are studied. At last, some conclusions are made after observing all the results and an example of an anti-invariant submanifold of a trans-Sasakian manifold is given in which all the results can be verified easily.
The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, $\xi $-projectively flat, $M$-projectively flat, $\xi $-$M$-projectively flat, pseudo projectively flat and $\xi $-pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat, concircularly flat, $M$-projectively flat and pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting the aforesaid connection are studied. At last, some conclusions are made after observing all the results and an example of an anti-invariant submanifold of a trans-Sasakian manifold is given in which all the results can be verified easily.
DOI : 10.21136/MB.2021.0058-21
Classification : 53C05, 53C15, 53C20, 53C25, 53C40
Keywords: anti-invariant submanifold; trans-Sasakian manifold; Zamkovoy connection; $\eta $-Einstein manifold; Ricci curvature tensor; concircular curvature tensor; projective curvature tensor; $M$-projective curvature tensor; pseudo projective curvature tensor; Ricci soliton\looseness -1
@article{10_21136_MB_2021_0058_21,
     author = {Karmakar, Payel},
     title = {Curvature tensors and {Ricci} solitons with respect to {Zamkovoy} connection in anti-invariant submanifolds of {trans-Sasakian} manifold},
     journal = {Mathematica Bohemica},
     pages = {419--434},
     year = {2022},
     volume = {147},
     number = {3},
     doi = {10.21136/MB.2021.0058-21},
     mrnumber = {4482315},
     zbl = {07584134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0058-21/}
}
TY  - JOUR
AU  - Karmakar, Payel
TI  - Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold
JO  - Mathematica Bohemica
PY  - 2022
SP  - 419
EP  - 434
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0058-21/
DO  - 10.21136/MB.2021.0058-21
LA  - en
ID  - 10_21136_MB_2021_0058_21
ER  - 
%0 Journal Article
%A Karmakar, Payel
%T Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold
%J Mathematica Bohemica
%D 2022
%P 419-434
%V 147
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0058-21/
%R 10.21136/MB.2021.0058-21
%G en
%F 10_21136_MB_2021_0058_21
Karmakar, Payel. Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 419-434. doi: 10.21136/MB.2021.0058-21

[1] Baishya, K. K., Biswas, A.: Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection. Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12 (2019), 233-246. | DOI | MR

[2] Biswas, A., Baishya, K. K.: A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds. Sci. Stud. Res., Ser. Math. Inform. 29 (2019), 59-72. | MR

[3] Blaga, A. M.: Canonical connections on para-Kenmotsu manifolds. Novi Sad J. Math. 45 (2015), 131-142. | DOI | MR | JFM

[4] Chaubey, S. K., Ojha, R. H.: On the $m$-projective curvature tensor of a Kenmotsu manifold. Differ. Geom. Dyn. Syst. 12 (2010), 52-60. | MR | JFM

[5] Chaubey, S. K., Prakash, S., Nivas, R.: Some properties of $m$-projective curvature tensor in Kenmotsu manifolds. Bull. Math. Anal. Appl. 4 (2012), 48-56. | MR | JFM

[6] Das, A., Mandal, A.: Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection. Aligarh Bull. Math. 39 (2020), 47-61. | MR

[7] De, U. C., Shaikh, A. A.: Complex Manifolds and Contact Manifolds. Narosa Publishing House, New Delhi (2009). | MR | JFM

[8] Hamilton, R. S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17 (1982), 255-306. | DOI | MR | JFM

[9] Hamilton, R. S.: The Ricci flow on surfaces. Mathematics and General Relativity Contemporary Mathematics 71. AMS, Providence (1988), 237-262. | DOI | MR | JFM

[10] Karmakar, P., Bhattacharyya, A.: Anti-invariant submanifolds of some indefinite almost contact and paracontact manifolds. Bull. Calcutta Math. Soc. 112 (2020), 95-108.

[11] Mandal, A., Das, A.: On $M$-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection. Adv. Math., Sci. J. 9 (2020), 8929-8940. | DOI

[12] Mandal, A., Das, A.: Projective curvature tensor with respect to Zamkovoy connection in Lorentzian para-Sasakian manifolds. J. Indones. Math. Soc. 26 (2020), 369-379. | DOI | MR | JFM

[13] Mandal, A., Das, A.: Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection. Bull. Cal. Math. Soc. 112 (2020), 431-450. | MR

[14] Mandal, A., Das, A.: LP-Sasakian manifolds equipped with Zamkovoy connection and conharmonic curvature tensor. J. Indones. Math. Soc. 27 (2021), 137-149. | DOI | MR

[15] Nagaraja, H. G., Somashekhara, G.: On pseudo projective curvature tensor in Sasakian manifolds. Int. J. Contemp. Math. Sci. 6 (2011), 1319-1328. | MR | JFM

[16] Narain, D., Prakash, A., Prasad, B.: A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 55 (2009), 275-284. | MR | JFM

[17] Ojha, R. H.: On Sasakian manifold. Kyungpook Math. J. 13 (1973), 211-215. | MR | JFM

[18] Ojha, R. H.: A note on the $M$-projective curvature tensor. Indian J. Pure Appl. Math. 8 (1977), 1531-1534. | MR | JFM

[19] Ojha, R. H.: $M$-projectively flat Sasakian manifolds. Indian J. Pure Appl. Math. 17 (1986), 481-484. | MR | JFM

[20] Pandey, H. B., Kumar, A.: Anti-invariant submanifolds of almost para-contact manifolds. Indian J. Pure Appl. Math. 16 (1985), 586-590. | MR | JFM

[21] Pokhariyal, G. P., Mishra, R. S.: Curvature tensors and their relativistic significance. II. Yokohama Math. J. 19 (1971), 97-103. | MR | JFM

[22] Prakasha, D. G., Mirji, K.: On the $M$-projective curvature tensor of a $(k,\mu)$-contact metric manifold. Facta Univ., Ser. Math. Inf. 32 (2017), 117-128. | DOI | MR | JFM

[23] Prasad, B.: A pseudo projective curvature tensor on a Riemannian manifold. Bull. Calcutta Math. Soc. 94 (2002), 163-166. | MR | JFM

[24] Shaikh, A. A., Kundu, H.: On equivalency of various geometric structures. J. Geom. 105 (2014), 139-165. | DOI | MR | JFM

[25] Shukla, S. S., Singh, D. D.: On $(\epsilon)$-trans-Sasakian manifolds. Int. J. Math. Anal., Ruse 4 (2010), 2401-2414. | MR | JFM

[26] Singh, J. P.: On $m$-projectively flat almost pseudo Ricci symmetric manifolds. Acta Math. Univ. Comen., New Ser. 86 (2017), 335-343. | MR | JFM

[27] Takahashi, T.: Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J., II. Ser. 21 (1969), 271-290. | DOI | MR | JFM

[28] Tripathi, M. M., Gupta, P.: On $\tau$-curvature tensor in $K$-contact and Sasakian manifolds. Int. Electron. J. Geom. 4 (2011), 32-47. | MR | JFM

[29] Yano, K.: Concircular geometry I. Concircular transformations. Proc. Acad., Tokyo 16 (1940), 195-200 \99999JFM99999 66.0888.01. | DOI | MR

[30] Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Mathematics Studies 32. Princeton University Press, Princeton (1953). | DOI | MR | JFM

[31] Yano, K., Kon, M.: Anti-invariant submanifolds of Sasakian space forms. I. Tohoku Math. J., II. Ser. 29 (1977), 9-23. | DOI | MR | JFM

[32] Zamkovoy, S.: Canonical connections on paracontact manifolds. Ann. Global Anal. Geom. 36 (2009), 37-60. | DOI | MR | JFM

Cité par Sources :