A formula for the number of solutions of a restricted linear congruence
Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 47-54
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Consider the linear congruence equation $x_1+\ldots +x_k \equiv b\pmod {n^s}$ for $b\in \mathbb Z$, $n,s\in \mathbb N$. Let $(a,b)_s$ denote the generalized gcd of $a$ and $b$ which is the largest $l^s$ with $l\in \mathbb N$ dividing $a$ and $b$ simultaneously. Let $d_1,\ldots , d_{\tau (n)}$ be all positive divisors of $n$. For each $d_j\mid n$, define $\mathcal {C}_{j,s}(n) = \{1\leq x\leq n^s\colon (x,n^s)_s = d^s_j\}$. K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on $x_i$. We generalize their result with generalized gcd restrictions on $x_i$ and prove that for the above linear congruence, the number of solutions is $$ \frac {1}{n^s}\sum \limits _{d\mid n}c_{d,s}(b)\prod \limits _{j=1}^{\tau (n)}\Bigl (c_{{n}/{d_j},s}\Bigl (\frac {n^s}{d^s}\Big )\Big )^{g_j} $$ where $g_j = |\{x_1,\ldots , x_k\}\cap \mathcal {C}_{j,s}(n)|$ for $j=1,\ldots , \tau (n)$ and $c_{d,s}$ denotes the generalized Ramanujan sum defined by E. Cohen (1955).
Consider the linear congruence equation $x_1+\ldots +x_k \equiv b\pmod {n^s}$ for $b\in \mathbb Z$, $n,s\in \mathbb N$. Let $(a,b)_s$ denote the generalized gcd of $a$ and $b$ which is the largest $l^s$ with $l\in \mathbb N$ dividing $a$ and $b$ simultaneously. Let $d_1,\ldots , d_{\tau (n)}$ be all positive divisors of $n$. For each $d_j\mid n$, define $\mathcal {C}_{j,s}(n) = \{1\leq x\leq n^s\colon (x,n^s)_s = d^s_j\}$. K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on $x_i$. We generalize their result with generalized gcd restrictions on $x_i$ and prove that for the above linear congruence, the number of solutions is $$ \frac {1}{n^s}\sum \limits _{d\mid n}c_{d,s}(b)\prod \limits _{j=1}^{\tau (n)}\Bigl (c_{{n}/{d_j},s}\Bigl (\frac {n^s}{d^s}\Big )\Big )^{g_j} $$ where $g_j = |\{x_1,\ldots , x_k\}\cap \mathcal {C}_{j,s}(n)|$ for $j=1,\ldots , \tau (n)$ and $c_{d,s}$ denotes the generalized Ramanujan sum defined by E. Cohen (1955).
DOI :
10.21136/MB.2020.0171-18
Classification :
11A25, 11D79, 11L03, 11P83, 42A16
Keywords: restricted linear congruence; generalized gcd; generalized Ramanujan sum; finite Fourier transform
Keywords: restricted linear congruence; generalized gcd; generalized Ramanujan sum; finite Fourier transform
@article{10_21136_MB_2020_0171_18,
author = {Namboothiri, K. Vishnu},
title = {A formula for the number of solutions of a restricted linear congruence},
journal = {Mathematica Bohemica},
pages = {47--54},
year = {2021},
volume = {146},
number = {1},
doi = {10.21136/MB.2020.0171-18},
mrnumber = {4227310},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0171-18/}
}
TY - JOUR AU - Namboothiri, K. Vishnu TI - A formula for the number of solutions of a restricted linear congruence JO - Mathematica Bohemica PY - 2021 SP - 47 EP - 54 VL - 146 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0171-18/ DO - 10.21136/MB.2020.0171-18 LA - en ID - 10_21136_MB_2020_0171_18 ER -
Namboothiri, K. Vishnu. A formula for the number of solutions of a restricted linear congruence. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 47-54. doi: 10.21136/MB.2020.0171-18
Cité par Sources :