Keywords: restricted linear congruence; generalized gcd; generalized Ramanujan sum; finite Fourier transform
@article{10_21136_MB_2020_0171_18,
author = {Namboothiri, K. Vishnu},
title = {A formula for the number of solutions of a restricted linear congruence},
journal = {Mathematica Bohemica},
pages = {47--54},
year = {2021},
volume = {146},
number = {1},
doi = {10.21136/MB.2020.0171-18},
mrnumber = {4227310},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0171-18/}
}
TY - JOUR AU - Namboothiri, K. Vishnu TI - A formula for the number of solutions of a restricted linear congruence JO - Mathematica Bohemica PY - 2021 SP - 47 EP - 54 VL - 146 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0171-18/ DO - 10.21136/MB.2020.0171-18 LA - en ID - 10_21136_MB_2020_0171_18 ER -
Namboothiri, K. Vishnu. A formula for the number of solutions of a restricted linear congruence. Mathematica Bohemica, Tome 146 (2021) no. 1, pp. 47-54. doi: 10.21136/MB.2020.0171-18
[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). | DOI | MR | JFM
[2] Bibak, K., Kapron, B. M., Srinivasan, V.: On a restricted linear congruence. Int. J. Number Theory 12 (2016), 2167-2171. | DOI | MR | JFM
[3] Bibak, K., Kapron, B. M., Srinivasan, V., Tauraso, R., Tóth, L.: Restricted linear congruences. J. Number Theory 171 (2017), 128-144. | DOI | MR | JFM
[4] Bibak, K., Kapron, B. M., Srinivasan, V., Tóth, L.: On an almost-universal hash function family with applications to authentication and secrecy codes. Int. J. Found. Comput. Sci. (2018), 357-375. | DOI | MR | JFM
[5] Cohen, E.: An extension of Ramanujan's sum. Duke Math. J. 16 (1949), 85-90. | DOI | MR | JFM
[6] Cohen, E.: An extension of Ramanujan's sum. II. Additive properties. Duke Math. J. 22 (1955), 543-550. | DOI | MR | JFM
[7] Cohen, E.: A class of arithmetical functions. Proc. Natl. Acad. Sci. USA 41 (1955), 939-944. | DOI | MR | JFM
[8] Dixon, J. D.: A finite analogue of the Goldbach problem. Can. Math. Bull. 3 (1960), 121-126. | DOI | MR | JFM
[9] Lehmer, D. N.: Certain theorems in the theory of quadratic residues. Am. Math. Monthly 20 (1913), 151-157 \99999JFM99999 44.0248.09. | DOI | MR
[10] Liskovets, V. A.: A multivariate arithmetic function of combinatorial and topological significance. Integers 10 (2010), 155-177. | DOI | MR | JFM
[11] McCarthy, P. J.: The generation of arithmetical identities. J. Reine Angew. Math. 203 (1960), 55-63. | DOI | MR | JFM
[12] Montgomery, H. L., Vaughan, R. C.: Multiplicative Number Theory I: Classical Theory. Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). | DOI | MR | JFM
[13] Namboothiri, K. V.: On the number of solutions of a restricted linear congruence. J. Number Theory 188 (2018), 324-334. | DOI | MR | JFM
[14] Nicol, C. A., Vandiver, H. S.: A Von Sterneck arithmetical function and restricted partitions with respect to a modulus. Proc. Natl. Acad. Sci. USA 40 (1954), 825-835. | DOI | MR | JFM
[15] Rademacher, H.: Aufgabe 30. Jahresber. Dtsch. Math.-Ver. 34 (1925), page 158 German.
[16] Rademacher, H.: Aufgabe 30. Lösung von A. Brauer. Jahresber. Dtsch. Math.-Ver. 35 (1926), 92-94 German \99999JFM99999 52.0139.03.
[17] Sander, J. W., Sander, T.: Adding generators in cyclic groups. J. Number Theory 133 (2013), 705-718. | DOI | MR | JFM
[18] Tóth, L.: Counting solutions of quadratic congruences in several variables revisited. J. Integer Seq. 17 (2014), Article 14.11.6, 23 pages. | MR | JFM
Cité par Sources :