Maximum number of limit cycles for generalized Liénard polynomial differential systems
Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 151-165.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider limit cycles of a class of polynomial differential systems of the form $$ \begin {cases} \dot {x}=y, \\ \dot {y}=-x-\varepsilon (g_{21}( x) y^{2\alpha +1} +f_{21}(x) y^{2\beta })-\varepsilon ^{2}(g_{22}( x) y^{2\alpha +1}+f_{22}( x) y^{2\beta }), \end {cases} $$ where $\beta $ and $\alpha $ are positive integers, $g_{2j}$ and $f_{2j}$ have degree $m$ and $n$, respectively, for each $j=1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot {x}=y$, $\dot {y}=-x$ using the averaging theory of first and second order.
DOI : 10.21136/MB.2020.0134-18
Classification : 34C07, 34C23, 37G15
Keywords: polynomial differential system; limit cycle; averaging theory
@article{10_21136_MB_2020_0134_18,
     author = {Berbache, Aziza and Bendjeddou, Ahmed and Benadouane, Sabah},
     title = {Maximum number of limit cycles for generalized {Li\'enard} polynomial differential systems},
     journal = {Mathematica Bohemica},
     pages = {151--165},
     publisher = {mathdoc},
     volume = {146},
     number = {2},
     year = {2021},
     doi = {10.21136/MB.2020.0134-18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/}
}
TY  - JOUR
AU  - Berbache, Aziza
AU  - Bendjeddou, Ahmed
AU  - Benadouane, Sabah
TI  - Maximum number of limit cycles for generalized Liénard polynomial differential systems
JO  - Mathematica Bohemica
PY  - 2021
SP  - 151
EP  - 165
VL  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/
DO  - 10.21136/MB.2020.0134-18
LA  - en
ID  - 10_21136_MB_2020_0134_18
ER  - 
%0 Journal Article
%A Berbache, Aziza
%A Bendjeddou, Ahmed
%A Benadouane, Sabah
%T Maximum number of limit cycles for generalized Liénard polynomial differential systems
%J Mathematica Bohemica
%D 2021
%P 151-165
%V 146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/
%R 10.21136/MB.2020.0134-18
%G en
%F 10_21136_MB_2020_0134_18
Berbache, Aziza; Bendjeddou, Ahmed; Benadouane, Sabah. Maximum number of limit cycles for generalized Liénard polynomial differential systems. Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 151-165. doi : 10.21136/MB.2020.0134-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/

Cité par Sources :