Maximum number of limit cycles for generalized Liénard polynomial differential systems
Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 151-165
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider limit cycles of a class of polynomial differential systems of the form $$ \begin {cases} \dot {x}=y, \\ \dot {y}=-x-\varepsilon (g_{21}( x) y^{2\alpha +1} +f_{21}(x) y^{2\beta })-\varepsilon ^{2}(g_{22}( x) y^{2\alpha +1}+f_{22}( x) y^{2\beta }), \end {cases} $$ where $\beta $ and $\alpha $ are positive integers, $g_{2j}$ and $f_{2j}$ have degree $m$ and $n$, respectively, for each $j=1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot {x}=y$, $\dot {y}=-x$ using the averaging theory of first and second order.
Classification :
34C07, 34C23, 37G15
Keywords: polynomial differential system; limit cycle; averaging theory
Keywords: polynomial differential system; limit cycle; averaging theory
@article{10_21136_MB_2020_0134_18,
author = {Berbache, Aziza and Bendjeddou, Ahmed and Benadouane, Sabah},
title = {Maximum number of limit cycles for generalized {Li\'enard} polynomial differential systems},
journal = {Mathematica Bohemica},
pages = {151--165},
publisher = {mathdoc},
volume = {146},
number = {2},
year = {2021},
doi = {10.21136/MB.2020.0134-18},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/}
}
TY - JOUR AU - Berbache, Aziza AU - Bendjeddou, Ahmed AU - Benadouane, Sabah TI - Maximum number of limit cycles for generalized Liénard polynomial differential systems JO - Mathematica Bohemica PY - 2021 SP - 151 EP - 165 VL - 146 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/ DO - 10.21136/MB.2020.0134-18 LA - en ID - 10_21136_MB_2020_0134_18 ER -
%0 Journal Article %A Berbache, Aziza %A Bendjeddou, Ahmed %A Benadouane, Sabah %T Maximum number of limit cycles for generalized Liénard polynomial differential systems %J Mathematica Bohemica %D 2021 %P 151-165 %V 146 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/ %R 10.21136/MB.2020.0134-18 %G en %F 10_21136_MB_2020_0134_18
Berbache, Aziza; Bendjeddou, Ahmed; Benadouane, Sabah. Maximum number of limit cycles for generalized Liénard polynomial differential systems. Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 151-165. doi: 10.21136/MB.2020.0134-18
Cité par Sources :