Maximum number of limit cycles for generalized Liénard polynomial differential systems
Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 151-165
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider limit cycles of a class of polynomial differential systems of the form $$ \begin {cases} \dot {x}=y, \\ \dot {y}=-x-\varepsilon (g_{21}( x) y^{2\alpha +1} +f_{21}(x) y^{2\beta })-\varepsilon ^{2}(g_{22}( x) y^{2\alpha +1}+f_{22}( x) y^{2\beta }), \end {cases} $$ where $\beta $ and $\alpha $ are positive integers, $g_{2j}$ and $f_{2j}$ have degree $m$ and $n$, respectively, for each $j=1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot {x}=y$, $\dot {y}=-x$ using the averaging theory of first and second order.
We consider limit cycles of a class of polynomial differential systems of the form $$ \begin {cases} \dot {x}=y, \\ \dot {y}=-x-\varepsilon (g_{21}( x) y^{2\alpha +1} +f_{21}(x) y^{2\beta })-\varepsilon ^{2}(g_{22}( x) y^{2\alpha +1}+f_{22}( x) y^{2\beta }), \end {cases} $$ where $\beta $ and $\alpha $ are positive integers, $g_{2j}$ and $f_{2j}$ have degree $m$ and $n$, respectively, for each $j=1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot {x}=y$, $\dot {y}=-x$ using the averaging theory of first and second order.
DOI : 10.21136/MB.2020.0134-18
Classification : 34C07, 34C23, 37G15
Keywords: polynomial differential system; limit cycle; averaging theory
@article{10_21136_MB_2020_0134_18,
     author = {Berbache, Aziza and Bendjeddou, Ahmed and Benadouane, Sabah},
     title = {Maximum number of limit cycles for generalized {Li\'enard} polynomial differential systems},
     journal = {Mathematica Bohemica},
     pages = {151--165},
     year = {2021},
     volume = {146},
     number = {2},
     doi = {10.21136/MB.2020.0134-18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/}
}
TY  - JOUR
AU  - Berbache, Aziza
AU  - Bendjeddou, Ahmed
AU  - Benadouane, Sabah
TI  - Maximum number of limit cycles for generalized Liénard polynomial differential systems
JO  - Mathematica Bohemica
PY  - 2021
SP  - 151
EP  - 165
VL  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/
DO  - 10.21136/MB.2020.0134-18
LA  - en
ID  - 10_21136_MB_2020_0134_18
ER  - 
%0 Journal Article
%A Berbache, Aziza
%A Bendjeddou, Ahmed
%A Benadouane, Sabah
%T Maximum number of limit cycles for generalized Liénard polynomial differential systems
%J Mathematica Bohemica
%D 2021
%P 151-165
%V 146
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0134-18/
%R 10.21136/MB.2020.0134-18
%G en
%F 10_21136_MB_2020_0134_18
Berbache, Aziza; Bendjeddou, Ahmed; Benadouane, Sabah. Maximum number of limit cycles for generalized Liénard polynomial differential systems. Mathematica Bohemica, Tome 146 (2021) no. 2, pp. 151-165. doi: 10.21136/MB.2020.0134-18

[1] Alavez-Ramírez, J., Blé, G., López-López, J., Llibre, J.: On the maximum number of limit cycles of a class of generalized Liénard differential systems. Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250063, 14 pages. | DOI | MR | JFM

[2] Blows, T. R., Lloyd, N. G.: The number of small-amplitude limit cycles of Liénard equations. Math. Proc. Camb. Philos. Soc. 95 (1984), 359-366. | DOI | MR | JFM

[3] Buică, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128 (2004), 7-22. | DOI | MR | JFM

[4] Chen, X., Llibre, J., Zhang, Z.: Sufficient conditions for the existence of at least $n$ or exactly $n$ limit cycles for the Liénard differential systems. J. Differ. Equations 242 (2007), 11-23. | DOI | MR | JFM

[5] Christopher, C., Lynch, S.: Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces. Nonlinearity 12 (1999), 1099-1112. | DOI | MR | JFM

[6] Coppel, W. A.: Some quadratic systems with at most one limit cycle. Dynamics Reported A Series in Dynamical Systems and Their Applications 2. B. G. Teubner, Stuttgart; John Wiley & Sons, Chichester (1989), 61-88 U. Kirchgraber et al. | DOI | MR | JFM

[7] García, B., Llibre, J., Río, J. S. Peréz del: Limit cycles of generalized Liénard polynomial differential systems via averaging theory. Chaos Solitons Fractals 62-63 (2014), 1-9. | DOI | MR | JFM

[8] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products. Academic Press, Amsterdam (2007). | DOI | MR | JFM

[9] Han, M., Yu, P.: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles. Applied Mathematical Sciences 181. Springer, Berlin (2012). | DOI | MR | JFM

[10] Li, J.: Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurcation Chaos Appl. Sci. Eng. 13 (2003), 47-106. | DOI | MR | JFM

[11] Llibre, J., Makhlouf, A.: Limit cycles of a class of generalized Liénard polynomial equations. J. Dyn. Control Syst. 21 (2015), 189-192. | DOI | MR | JFM

[12] Llibre, J., Mereu, A. C., Teixeira, M. A.: Limit cycles of the generalized polynomial Liénard differential equations. Math. Proc. Camb. Philos. Soc. 148 (2010), 363-383. | DOI | MR | JFM

[13] Llibre, J., Valls, C.: On the number of limit cycles of a class of polynomial differential systems. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 468 (2012), 2347-2360. | DOI | MR | JFM

[14] Llibre, J., Valls, C.: Limit cycles for a generalization of polynomial Liénard differential systems. Chaos Solitons Fractals 46 (2013), 65-74. | DOI | MR | JFM

[15] Llibre, J., Valls, C.: On the number of limit cycles for a generalization of Liénard polynomial differential systems. Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), Article ID 1350048, 16 pages. | DOI | MR | JFM

Cité par Sources :