Some properties of state filters in state residuated lattices
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 375-395.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: \begin {itemize} \item [(1)] $F$ is obstinate $\Leftrightarrow $ $L/F \cong \{0,1\}$; \item [(2)] $F$ is primary $\Leftrightarrow $ $L/F$ is a state local residuated lattice; \end {itemize} and that every g-state residuated lattice $X$ is a subdirect product of $\{X/P_{\lambda } \}$, where $P_{\lambda }$ is a prime state filter of $X$. \endgraf Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.
DOI : 10.21136/MB.2020.0040-19
Classification : 03B47, 06B10
Keywords: obstinate state filter; prime state filter; Boolean state filter; primary state filter; state filter; residuated lattice; local residuated lattice
@article{10_21136_MB_2020_0040_19,
     author = {Kondo, Michiro},
     title = {Some properties of state filters in state residuated lattices},
     journal = {Mathematica Bohemica},
     pages = {375--395},
     publisher = {mathdoc},
     volume = {146},
     number = {4},
     year = {2021},
     doi = {10.21136/MB.2020.0040-19},
     mrnumber = {4336545},
     zbl = {07442508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/}
}
TY  - JOUR
AU  - Kondo, Michiro
TI  - Some properties of state filters in state residuated lattices
JO  - Mathematica Bohemica
PY  - 2021
SP  - 375
EP  - 395
VL  - 146
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/
DO  - 10.21136/MB.2020.0040-19
LA  - en
ID  - 10_21136_MB_2020_0040_19
ER  - 
%0 Journal Article
%A Kondo, Michiro
%T Some properties of state filters in state residuated lattices
%J Mathematica Bohemica
%D 2021
%P 375-395
%V 146
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/
%R 10.21136/MB.2020.0040-19
%G en
%F 10_21136_MB_2020_0040_19
Kondo, Michiro. Some properties of state filters in state residuated lattices. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 375-395. doi : 10.21136/MB.2020.0040-19. http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/

Cité par Sources :