Some properties of state filters in state residuated lattices
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 375-395
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: \begin {itemize} \item [(1)] $F$ is obstinate $\Leftrightarrow $ $L/F \cong \{0,1\}$; \item [(2)] $F$ is primary $\Leftrightarrow $ $L/F$ is a state local residuated lattice; \end {itemize} and that every g-state residuated lattice $X$ is a subdirect product of $\{X/P_{\lambda } \}$, where $P_{\lambda }$ is a prime state filter of $X$. \endgraf Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.
We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: \begin {itemize} \item [(1)] $F$ is obstinate $\Leftrightarrow $ $L/F \cong \{0,1\}$; \item [(2)] $F$ is primary $\Leftrightarrow $ $L/F$ is a state local residuated lattice; \end {itemize} and that every g-state residuated lattice $X$ is a subdirect product of $\{X/P_{\lambda } \}$, where $P_{\lambda }$ is a prime state filter of $X$. \endgraf Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.
DOI : 10.21136/MB.2020.0040-19
Classification : 03B47, 06B10
Keywords: obstinate state filter; prime state filter; Boolean state filter; primary state filter; state filter; residuated lattice; local residuated lattice
@article{10_21136_MB_2020_0040_19,
     author = {Kondo, Michiro},
     title = {Some properties of state filters in state residuated lattices},
     journal = {Mathematica Bohemica},
     pages = {375--395},
     year = {2021},
     volume = {146},
     number = {4},
     doi = {10.21136/MB.2020.0040-19},
     mrnumber = {4336545},
     zbl = {07442508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/}
}
TY  - JOUR
AU  - Kondo, Michiro
TI  - Some properties of state filters in state residuated lattices
JO  - Mathematica Bohemica
PY  - 2021
SP  - 375
EP  - 395
VL  - 146
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/
DO  - 10.21136/MB.2020.0040-19
LA  - en
ID  - 10_21136_MB_2020_0040_19
ER  - 
%0 Journal Article
%A Kondo, Michiro
%T Some properties of state filters in state residuated lattices
%J Mathematica Bohemica
%D 2021
%P 375-395
%V 146
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/
%R 10.21136/MB.2020.0040-19
%G en
%F 10_21136_MB_2020_0040_19
Kondo, Michiro. Some properties of state filters in state residuated lattices. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 375-395. doi: 10.21136/MB.2020.0040-19

[1] Ciungu, L. C.: Bosbach and Riečan states on residuated lattices. J. Appl. Funct. Anal. 3 (2008), 175-188. | MR | JFM

[2] Constantinescu, N. M.: On pseudo BL-algebras with internal state. Soft Comput. 16 (2012), 1915-1922. | DOI | JFM

[3] Constantinescu, N. M.: State filters on fuzzy structures with internal states. Soft Comput. 18 (2014), 1841-1852. | DOI | JFM

[4] Dvurečenskij, A.: States on pseudo MV-algebras. Stud. Log. 68 (2001), 301-327. | DOI | MR | JFM

[5] Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for bounded non-commutative R$\ell$-monoids. Math. Slovaca 56 (2006), 487-500. | MR | JFM

[6] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded R$\ell$-monoids. Semigroup Forum 72 (2006), 190-206. | DOI | MR | JFM

[7] Dvurečenskij, A., Rachůnek, J., Šalounová, D.: State operators on generalizations of fuzzy structures. Fuzzy Sets Syst. 187 (2012), 58-76. | DOI | MR | JFM

[8] Flaminio, T., Montagna, F.: MV-algebras with internal states and probabilistic fuzzy logics. Int. J. Approx. Reasoning 50 (2009), 138-152. | DOI | MR | JFM

[9] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics 151. Elsevier, Amsterdam (2007). | DOI | MR | JFM

[10] Georgescu, G.: Bosbach states on fuzzy structures. Soft Comput. 8 (2004), 217-230. | DOI | JFM

[11] Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic--Studia Logica Library 4. Kluwer, Dordrecht (1998). | DOI | MR | JFM

[12] Hart, J. B., Rafter, L., Tsinakis, C.: The structure of commutative residuated lattices. Int. J. Algebra Comput. 12 (2002), 509-524. | DOI | MR | JFM

[13] Haveshki, M., Saeid, A. Borumand, Eslami, E.: Some types of filters in BL algebras. Soft Comput. 10 (2006), 657-664. | DOI | JFM

[14] Haveshki, M., Mohamadhasani, M.: Extended filters in bounded commutative R$\ell$-monoids. Soft Comput. 16 (2012), 2165-2173. | DOI | JFM

[15] He, P., Xin, X., Yang, Y.: On state residuated lattices. Soft Comput. 19 (2015), 2083-2094. | DOI | JFM

[16] Kondo, M.: Characterization of extended filters in residuated lattices. Soft Comput. 18 (2014), 427-432. | DOI | JFM

[17] Kondo, M.: States on bounded commutative residuated lattices. Math. Slovaca 64 (2014), 1093-1104. | DOI | MR | JFM

[18] Kondo, M.: Generalized state operators on residuated lattices. Soft Comput. 21 (2017), 6063-6071. | DOI | JFM

[19] Kondo, M., Kawaguchi, M. F.: Some properties of generalized state operators on residuated lattices. Proceedings of the 46th IEEE International Symposium on Multiple-Valued Logic IEEE Computer Society, Los Alamitos (2016), 162-166. | DOI | MR

[20] Kondo, M., Watari, O., Kawaguchi, M. F., Miyakoshi, M.: A Logic Determined by Commutative Residuated Lattices. New Dimensions in Fuzzy Logic and Related Technologies. Proceedings of the 5th EUSFLAT Conference, Volume 2 (2007), Universitas Ostraviensis, Ostrava (2007), 45-48.

[21] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44 (1994), 21-34. | MR | JFM

[22] Rachůnek, J., Šalounová, D.: State operators on GMV-algebras. Soft Comput. 15 (2011), 327-334. | DOI | JFM

[23] Turunen, E.: Boolean deductive systems of BL-algebras. Arch. Math. Logic 40 (2001), 467-473. | DOI | MR | JFM

[24] Ward, M., Dilworth, R. P.: Residuated lattices. Trans. Am. Math. Soc. 45 (1939), 335-354. | DOI | MR | JFM

Cité par Sources :