Some properties of state filters in state residuated lattices
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 375-395

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: \begin {itemize} \item [(1)] $F$ is obstinate $\Leftrightarrow $ $L/F \cong \{0,1\}$; \item [(2)] $F$ is primary $\Leftrightarrow $ $L/F$ is a state local residuated lattice; \end {itemize} and that every g-state residuated lattice $X$ is a subdirect product of $\{X/P_{\lambda } \}$, where $P_{\lambda }$ is a prime state filter of $X$. \endgraf Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.
DOI : 10.21136/MB.2020.0040-19
Classification : 03B47, 06B10
Keywords: obstinate state filter; prime state filter; Boolean state filter; primary state filter; state filter; residuated lattice; local residuated lattice
@article{10_21136_MB_2020_0040_19,
     author = {Kondo, Michiro},
     title = {Some properties of state filters in state residuated lattices},
     journal = {Mathematica Bohemica},
     pages = {375--395},
     publisher = {mathdoc},
     volume = {146},
     number = {4},
     year = {2021},
     doi = {10.21136/MB.2020.0040-19},
     mrnumber = {4336545},
     zbl = {07442508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/}
}
TY  - JOUR
AU  - Kondo, Michiro
TI  - Some properties of state filters in state residuated lattices
JO  - Mathematica Bohemica
PY  - 2021
SP  - 375
EP  - 395
VL  - 146
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/
DO  - 10.21136/MB.2020.0040-19
LA  - en
ID  - 10_21136_MB_2020_0040_19
ER  - 
%0 Journal Article
%A Kondo, Michiro
%T Some properties of state filters in state residuated lattices
%J Mathematica Bohemica
%D 2021
%P 375-395
%V 146
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2020.0040-19/
%R 10.21136/MB.2020.0040-19
%G en
%F 10_21136_MB_2020_0040_19
Kondo, Michiro. Some properties of state filters in state residuated lattices. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 375-395. doi: 10.21136/MB.2020.0040-19

Cité par Sources :