On ideal theory of hoops
Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 141-162.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we define and characterize the notions of (implicative, maximal, prime) ideals in hoops. Then we investigate the relation between them and prove that every maximal implicative ideal of a $\vee $-hoop with double negation property is a prime one. Also, we define a congruence relation on hoops by ideals and study the quotient that is made by it. This notion helps us to show that an ideal is maximal if and only if the quotient hoop is a simple MV-algebra. Also, we investigate the relationship between ideals and filters by exploiting the set of complements.
DOI : 10.21136/MB.2019.0140-17
Classification : 03G25, 06B99
Keywords: Hoop; (implicative, maximal, prime) ideal; MV-algebra; Boolean algebra
@article{10_21136_MB_2019_0140_17,
     author = {Aaly Kologani, Mona and Borzooei, Rajab Ali},
     title = {On ideal theory of hoops},
     journal = {Mathematica Bohemica},
     pages = {141--162},
     publisher = {mathdoc},
     volume = {145},
     number = {2},
     year = {2020},
     doi = {10.21136/MB.2019.0140-17},
     mrnumber = {4221826},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0140-17/}
}
TY  - JOUR
AU  - Aaly Kologani, Mona
AU  - Borzooei, Rajab Ali
TI  - On ideal theory of hoops
JO  - Mathematica Bohemica
PY  - 2020
SP  - 141
EP  - 162
VL  - 145
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0140-17/
DO  - 10.21136/MB.2019.0140-17
LA  - en
ID  - 10_21136_MB_2019_0140_17
ER  - 
%0 Journal Article
%A Aaly Kologani, Mona
%A Borzooei, Rajab Ali
%T On ideal theory of hoops
%J Mathematica Bohemica
%D 2020
%P 141-162
%V 145
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0140-17/
%R 10.21136/MB.2019.0140-17
%G en
%F 10_21136_MB_2019_0140_17
Aaly Kologani, Mona; Borzooei, Rajab Ali. On ideal theory of hoops. Mathematica Bohemica, Tome 145 (2020) no. 2, pp. 141-162. doi : 10.21136/MB.2019.0140-17. http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0140-17/

Cité par Sources :