On the order of magnitude of Walsh-Fourier transform
Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 265-280
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb R^+:=[0,\infty )$ let $\hat f$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat f(y)\to 0$ as $y\to \infty $. But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of $L^1(\mathbb R^+)$ there is a definite rate at which the Walsh-Fourier transform tends to zero. We determine this rate for functions of bounded variation on $\mathbb R^+$. We also determine such rate of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined on $(\mathbb R^+)^N$, $N\in \mathbb N$.
For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb R^+:=[0,\infty )$ let $\hat f$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat f(y)\to 0$ as $y\to \infty $. But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of $L^1(\mathbb R^+)$ there is a definite rate at which the Walsh-Fourier transform tends to zero. We determine this rate for functions of bounded variation on $\mathbb R^+$. We also determine such rate of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined on $(\mathbb R^+)^N$, $N\in \mathbb N$.
DOI : 10.21136/MB.2019.0075-18
Classification : 26A12, 26A45, 26B30, 26D15, 42C20
Keywords: function of bounded variation over $\mathbb R^+$; function of bounded variation over $(\mathbb R^+)^2$; function of bounded variation over $(\mathbb R^+)^N$; order of magnitude; Riemann-Lebesgue lemma; Walsh-Fourier transform
@article{10_21136_MB_2019_0075_18,
     author = {Ghodadra, Bhikha Lila and F\"ul\"op, Vanda},
     title = {On the order of magnitude of {Walsh-Fourier} transform},
     journal = {Mathematica Bohemica},
     pages = {265--280},
     year = {2020},
     volume = {145},
     number = {3},
     doi = {10.21136/MB.2019.0075-18},
     mrnumber = {4221834},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/}
}
TY  - JOUR
AU  - Ghodadra, Bhikha Lila
AU  - Fülöp, Vanda
TI  - On the order of magnitude of Walsh-Fourier transform
JO  - Mathematica Bohemica
PY  - 2020
SP  - 265
EP  - 280
VL  - 145
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/
DO  - 10.21136/MB.2019.0075-18
LA  - en
ID  - 10_21136_MB_2019_0075_18
ER  - 
%0 Journal Article
%A Ghodadra, Bhikha Lila
%A Fülöp, Vanda
%T On the order of magnitude of Walsh-Fourier transform
%J Mathematica Bohemica
%D 2020
%P 265-280
%V 145
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/
%R 10.21136/MB.2019.0075-18
%G en
%F 10_21136_MB_2019_0075_18
Ghodadra, Bhikha Lila; Fülöp, Vanda. On the order of magnitude of Walsh-Fourier transform. Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 265-280. doi: 10.21136/MB.2019.0075-18

[1] Adams, C. R., Clarkson, J. A.: Properties of functions $f(x,y)$ of bounded variation. Trans. Am. Math. Soc. 36 (1934), 711-730 correction ibid. 46 page 468 1939. | DOI | MR | JFM

[2] Clarkson, J. A., Adams, C. R.: On definitions of bounded variation for functions of two variables. Trans. Am. Math. Soc. 35 (1933), 824-854. | DOI | MR | JFM

[3] Edwards, R. E.: Fourier Series. A Modern Introduction. Vol. 1. Graduate Texts in Mathematics 64. Springer, New York (1979). | DOI | MR | JFM

[4] Fine, N. J.: On the Walsh functions. Trans. Am. Math. Soc. 65 (1949), 372-414. | DOI | MR | JFM

[5] Fülöp, V., Móricz, F.: Order of magnitude of multiple Fourier coefficients of functions of bounded variation. Acta Math. Hung. 104 (2004), 95-104. | DOI | MR | JFM

[6] Ghodadra, B. L.: Order of magnitude of multiple Fourier coefficients of functions of bounded $p$-variation. Acta Math. Hung. 128 (2010), 328-343. | DOI | MR | JFM

[7] Ghodadra, B. L.: Order of magnitude of multiple Walsh-Fourier coefficients of functions of bounded $p$-variation. Int. J. Pure Appl. Math. 82 (2013), 399-408. | MR | JFM

[8] Ghodadra, B. L.: An application of Jensen's inequality in determining the order of magnitude of multiple Fourier coefficients of functions of bounded $\phi$-variation. Math. Inequal. Appl. 17 (2014), 707-718. | DOI | MR | JFM

[9] Ghodadra, B. L., Fülöp, V.: On the order of magnitude of Fourier transform. Math. Inequal. Appl. 18 (2015), 845-858. | DOI | MR | JFM

[10] Ghorpade, S. R., Limaye, B. V.: A Course in Multivariable Calculus and Analysis. Undergraduate Texts in Mathematics. Springer, London (2010). | DOI | MR | JFM

[11] Ghodadra, B. L., Patadia, J. R.: A note on the magnitude of Walsh Fourier coefficients. JIPAM, J. Inequal. Pure Appl. Math. 9 (2008), Article No. 44, 7 pages. | MR | JFM

[12] Hardy, G. H.: On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters. Quart. J. 37 (1905), 53-79 \99999JFM99999 36.0501.02.

[13] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. Die Grundlehren der mathematischen Wissenschaften 152. Springer, New York (1970). | DOI | MR | JFM

[14] Hobson, E. W.: The Theory of Functions of a Real Variable and the Theory of Fourier's Series. Vol. I. University Press, Cambridge (1927),\99999JFM99999 53.0226.01. | MR

[15] Lebesgue, H.: Sur la répresentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz. Bull. Soc. Math. Fr. 38 French (1910), 184-210 \99999JFM99999 41.0476.02. | DOI | MR

[16] Móricz, F.: Order of magnitude of double Fourier coefficients of functions of bounded variation. Analysis, München 22 (2002), 335-345. | DOI | MR | JFM

[17] Móricz, F.: Pointwise convergence of double Fourier integrals of functions of bounded variation over $\Bbb R^2$. J. Math. Anal. Appl. 424 (2015), 1530-1543. | DOI | MR | JFM

[18] Natanson, I. P.: Theory of Functions of Real Variable. Frederick Ungar Publishing, New York (1955). | MR | JFM

[19] Paley, R. E. A. C.: A remarkable series of orthogonal functions I. Proc. Lond. Math. Soc., II. Ser. 34 (1932), 241-264. | DOI | MR | JFM

[20] Schipp, F., Wade, W. R., Simon, P.: Walsh Series. An Introduction to dyadic Harmonic Analysis. With the Assistance of J. Pál. Adam Hilger, Bristol (1990). | MR | JFM

[21] Taibleson, M.: Fourier coefficients of functions of bounded variation. Proc. Am. Math. Soc. 18 (1967), page 766. | DOI | MR | JFM

[22] Zygmund, A.: Trigonometric Series. Volumes I and II combined. With a foreword by Robert Fefferman. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002),\99999DOI99999 10.1017/CBO9781316036587 \newpage. | MR | JFM

Cité par Sources :