On the order of magnitude of Walsh-Fourier transform
Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 265-280.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb R^+:=[0,\infty )$ let $\hat f$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat f(y)\to 0$ as $y\to \infty $. But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of $L^1(\mathbb R^+)$ there is a definite rate at which the Walsh-Fourier transform tends to zero. We determine this rate for functions of bounded variation on $\mathbb R^+$. We also determine such rate of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined on $(\mathbb R^+)^N$, $N\in \mathbb N$.
DOI : 10.21136/MB.2019.0075-18
Classification : 26A12, 26A45, 26B30, 26D15, 42C20
Keywords: function of bounded variation over $\mathbb R^+$; function of bounded variation over $(\mathbb R^+)^2$; function of bounded variation over $(\mathbb R^+)^N$; order of magnitude; Riemann-Lebesgue lemma; Walsh-Fourier transform
@article{10_21136_MB_2019_0075_18,
     author = {Ghodadra, Bhikha Lila and F\"ul\"op, Vanda},
     title = {On the order of magnitude of {Walsh-Fourier} transform},
     journal = {Mathematica Bohemica},
     pages = {265--280},
     publisher = {mathdoc},
     volume = {145},
     number = {3},
     year = {2020},
     doi = {10.21136/MB.2019.0075-18},
     mrnumber = {4221834},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/}
}
TY  - JOUR
AU  - Ghodadra, Bhikha Lila
AU  - Fülöp, Vanda
TI  - On the order of magnitude of Walsh-Fourier transform
JO  - Mathematica Bohemica
PY  - 2020
SP  - 265
EP  - 280
VL  - 145
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/
DO  - 10.21136/MB.2019.0075-18
LA  - en
ID  - 10_21136_MB_2019_0075_18
ER  - 
%0 Journal Article
%A Ghodadra, Bhikha Lila
%A Fülöp, Vanda
%T On the order of magnitude of Walsh-Fourier transform
%J Mathematica Bohemica
%D 2020
%P 265-280
%V 145
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/
%R 10.21136/MB.2019.0075-18
%G en
%F 10_21136_MB_2019_0075_18
Ghodadra, Bhikha Lila; Fülöp, Vanda. On the order of magnitude of Walsh-Fourier transform. Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 265-280. doi : 10.21136/MB.2019.0075-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/

Cité par Sources :