On the order of magnitude of Walsh-Fourier transform
Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 265-280
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb R^+:=[0,\infty )$ let $\hat f$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat f(y)\to 0$ as $y\to \infty $. But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of $L^1(\mathbb R^+)$ there is a definite rate at which the Walsh-Fourier transform tends to zero. We determine this rate for functions of bounded variation on $\mathbb R^+$. We also determine such rate of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined on $(\mathbb R^+)^N$, $N\in \mathbb N$.
DOI :
10.21136/MB.2019.0075-18
Classification :
26A12, 26A45, 26B30, 26D15, 42C20
Keywords: function of bounded variation over $\mathbb R^+$; function of bounded variation over $(\mathbb R^+)^2$; function of bounded variation over $(\mathbb R^+)^N$; order of magnitude; Riemann-Lebesgue lemma; Walsh-Fourier transform
Keywords: function of bounded variation over $\mathbb R^+$; function of bounded variation over $(\mathbb R^+)^2$; function of bounded variation over $(\mathbb R^+)^N$; order of magnitude; Riemann-Lebesgue lemma; Walsh-Fourier transform
@article{10_21136_MB_2019_0075_18,
author = {Ghodadra, Bhikha Lila and F\"ul\"op, Vanda},
title = {On the order of magnitude of {Walsh-Fourier} transform},
journal = {Mathematica Bohemica},
pages = {265--280},
publisher = {mathdoc},
volume = {145},
number = {3},
year = {2020},
doi = {10.21136/MB.2019.0075-18},
mrnumber = {4221834},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/}
}
TY - JOUR AU - Ghodadra, Bhikha Lila AU - Fülöp, Vanda TI - On the order of magnitude of Walsh-Fourier transform JO - Mathematica Bohemica PY - 2020 SP - 265 EP - 280 VL - 145 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/ DO - 10.21136/MB.2019.0075-18 LA - en ID - 10_21136_MB_2019_0075_18 ER -
%0 Journal Article %A Ghodadra, Bhikha Lila %A Fülöp, Vanda %T On the order of magnitude of Walsh-Fourier transform %J Mathematica Bohemica %D 2020 %P 265-280 %V 145 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2019.0075-18/ %R 10.21136/MB.2019.0075-18 %G en %F 10_21136_MB_2019_0075_18
Ghodadra, Bhikha Lila; Fülöp, Vanda. On the order of magnitude of Walsh-Fourier transform. Mathematica Bohemica, Tome 145 (2020) no. 3, pp. 265-280. doi: 10.21136/MB.2019.0075-18
Cité par Sources :