Keywords: nilpotent Lie group; isometric nilmanifolds; normalizer; Lie algebroid; normal subgroupoid system; inner automorphism
@article{10_21136_MB_2018_0041_17,
author = {Fana{\"\i}, Hamid-Reza and Hasan-Zadeh, Atefeh},
title = {An application of {Lie} groupoids to a rigidity problem of 2-step nilmanifolds},
journal = {Mathematica Bohemica},
pages = {149--160},
year = {2019},
volume = {144},
number = {2},
doi = {10.21136/MB.2018.0041-17},
mrnumber = {3974184},
zbl = {07088842},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0041-17/}
}
TY - JOUR AU - Fanaï, Hamid-Reza AU - Hasan-Zadeh, Atefeh TI - An application of Lie groupoids to a rigidity problem of 2-step nilmanifolds JO - Mathematica Bohemica PY - 2019 SP - 149 EP - 160 VL - 144 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0041-17/ DO - 10.21136/MB.2018.0041-17 LA - en ID - 10_21136_MB_2018_0041_17 ER -
%0 Journal Article %A Fanaï, Hamid-Reza %A Hasan-Zadeh, Atefeh %T An application of Lie groupoids to a rigidity problem of 2-step nilmanifolds %J Mathematica Bohemica %D 2019 %P 149-160 %V 144 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0041-17/ %R 10.21136/MB.2018.0041-17 %G en %F 10_21136_MB_2018_0041_17
Fanaï, Hamid-Reza; Hasan-Zadeh, Atefeh. An application of Lie groupoids to a rigidity problem of 2-step nilmanifolds. Mathematica Bohemica, Tome 144 (2019) no. 2, pp. 149-160. doi: 10.21136/MB.2018.0041-17
[1] Baer, R.: Primary Abelian groups and their automorphisms. Am. J. Math. 59 (1937), 99-117. | DOI | MR | JFM
[2] Besson, G., Courtois, G., Gallot, S.: Entropy and rigidity of locally symmetric spaces of strictly negative curvature. Geom. Func. Anal. 5 (1995), 731-799 French. | DOI | MR | JFM
[3] Besson, G., Courtois, G., Gallot, S.: Minimal entropy and Mostow's rigidity theorems. Ergodic Theory Dyn. Syst. 16 (1996), 623-649. | DOI | MR | JFM
[4] Châtelet, A.: Les groupes abéliens finis et les modules de points entiers. Bibliothèque universitaire. Travaux et mémoires de l'Université de Lille. Nouv. série II, 3. Gauthier-Villars, Lille (1925), French \99999JFM99999 51.0115.02.
[5] Croke, C.: Rigidity for surfaces of non-positive curvature. Comment. Math. Helvet. 65 (1990), 150-169. | DOI | MR | JFM
[6] Croke, C., Eberlein, P., Kleiner, B.: Conjugacy and rigidity for nonpositively curved manifolds of higher rank. Topology 35 (1996), 273-286. | DOI | MR | JFM
[7] Duistermaat, J. J., Kolk, J. A. C.: Lie Groups. Universitext. Springer, Berlin (2000). | DOI | MR | JFM
[8] Eberlein, P.: Geometry of two-step nilpotent groups with a left invariant metric. Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 611-660. | DOI | MR | JFM
[9] Fana{ï}, H.-R., Hasan-Zadeh, A.: A symplectic rigidity problem for $2$-step nilmanifolds. Houston J. Math. 43 (2017), 363-374. | MR | JFM
[10] Gabai, D.: On the geometric and topological rigidity of the hyperbolic 3-manifolds. Bull. Am. Math. Soc., New Ser. 31 (1994), 228-232. | DOI | MR | JFM
[11] Gordon, C. S., Mao, Y.: Geodesic conjugacies of two-step nilmanifolds. Mich. Math. J. 45 (1998), 451-481. | DOI | MR | JFM
[12] Gordon, C. S., Mao, Y., Schueth, D.: Symplectic rigidity of geodesic flows on two-step nilmanifolds. Ann. Sci. Éc. Norm. Supér. (4) 30 (1998), 417-427. | DOI | MR | JFM
[13] Gordon, C. S., Wilson, E. N.: Isospectral deformations of compact solvmanifolds. J. Differ. Geom. 19 (1984), 241-256. | DOI | MR | JFM
[14] Hallett, J. T., Hirsch, K. A.: Torsion-free groups having finite automorphism groups. J. Algebra 2 (1965), 287-298. | DOI | MR | JFM
[15] Hallett, J. T., Hirsch, K. A.: Die Konstruktion von Gruppen mit vorgeschriebenen Automorphismengruppen. J. Reine Angew. Math. 239-240 (1969), 32-46. | DOI | MR | JFM
[16] Hulpke, A.: Normalizer calculation using automorphisms. Computational Group Theory and the Theory of Groups. AMS special session On Computational Group Theory, Davidson, USA, 2007 Contemporary Mathematics 470. AMS, Providence (2008), 105-114 L.-C. Kappe et al. | MR | JFM
[17] Mackenzie, K. C. H.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series 213. Cambridge University Press, Cambridge (2005). | DOI | MR | JFM
[18] Mann, K.: Homomorphisms between diffeomorphism groups. Avaible at (2012). | arXiv | MR
[19] Mostow, G. D.: Strong Rigidity of Locally Symmetric Spaces. Annals of Mathematics Studies. No. 78. Princeton University Press, Princeton (1973). | DOI | MR | JFM
[20] O'Neill, B.: Semi Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics 103. Academic Press, London (1983). | MR | JFM
[21] Otal, J. P.: The spectrum marked by lengths of surfaces with negative curvature. Ann. Math. (2) 131 (1990), 151-162 French. | DOI | MR | JFM
[22] Raghunathan, M. S.: Discrete Subgroups of Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 68. Springer, Berlin (1972). | MR | JFM
Cité par Sources :