Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_MB_2018_0026_18, author = {Ling, Amy Poh Ai and Shimoj\={o}, Masahiko}, title = {Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data}, journal = {Mathematica Bohemica}, pages = {287--297}, publisher = {mathdoc}, volume = {144}, number = {3}, year = {2019}, doi = {10.21136/MB.2018.0026-18}, mrnumber = {3985858}, zbl = {07088852}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/} }
TY - JOUR AU - Ling, Amy Poh Ai AU - Shimojō, Masahiko TI - Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data JO - Mathematica Bohemica PY - 2019 SP - 287 EP - 297 VL - 144 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/ DO - 10.21136/MB.2018.0026-18 LA - en ID - 10_21136_MB_2018_0026_18 ER -
%0 Journal Article %A Ling, Amy Poh Ai %A Shimojō, Masahiko %T Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data %J Mathematica Bohemica %D 2019 %P 287-297 %V 144 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/ %R 10.21136/MB.2018.0026-18 %G en %F 10_21136_MB_2018_0026_18
Ling, Amy Poh Ai; Shimojō, Masahiko. Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 287-297. doi : 10.21136/MB.2018.0026-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/
Cité par Sources :