Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 287-297
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider solutions of quasilinear equations $u_{t}=\Delta u^{m} + u^{p}$ in $\mathbb R^{N}$ with the initial data $u_{0}$ satisfying $0 u_{0} M$ and $\lim _{|x|\to \infty }u_{0}(x)=M$ for some constant $M>0$. It is known that if $0$ with $p>1$, the blow-up set is empty. We find solutions $u$ that blow up throughout $\mathbb R^{N}$ when $m>p>1$.
DOI :
10.21136/MB.2018.0026-18
Classification :
35B44, 35K59
Keywords: quasilinear heat equation; total blow-up; blow-up only at space infinity
Keywords: quasilinear heat equation; total blow-up; blow-up only at space infinity
@article{10_21136_MB_2018_0026_18,
author = {Ling, Amy Poh Ai and Shimoj\={o}, Masahiko},
title = {Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data},
journal = {Mathematica Bohemica},
pages = {287--297},
publisher = {mathdoc},
volume = {144},
number = {3},
year = {2019},
doi = {10.21136/MB.2018.0026-18},
mrnumber = {3985858},
zbl = {07088852},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/}
}
TY - JOUR AU - Ling, Amy Poh Ai AU - Shimojō, Masahiko TI - Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data JO - Mathematica Bohemica PY - 2019 SP - 287 EP - 297 VL - 144 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/ DO - 10.21136/MB.2018.0026-18 LA - en ID - 10_21136_MB_2018_0026_18 ER -
%0 Journal Article %A Ling, Amy Poh Ai %A Shimojō, Masahiko %T Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data %J Mathematica Bohemica %D 2019 %P 287-297 %V 144 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/ %R 10.21136/MB.2018.0026-18 %G en %F 10_21136_MB_2018_0026_18
Ling, Amy Poh Ai; Shimojō, Masahiko. Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 287-297. doi: 10.21136/MB.2018.0026-18
Cité par Sources :