Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data
Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 287-297.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider solutions of quasilinear equations $u_{t}=\Delta u^{m} + u^{p}$ in $\mathbb R^{N}$ with the initial data $u_{0}$ satisfying $0 u_{0} M$ and $\lim _{|x|\to \infty }u_{0}(x)=M$ for some constant $M>0$. It is known that if $0$ with $p>1$, the blow-up set is empty. We find solutions $u$ that blow up throughout $\mathbb R^{N}$ when $m>p>1$.
DOI : 10.21136/MB.2018.0026-18
Classification : 35B44, 35K59
Keywords: quasilinear heat equation; total blow-up; blow-up only at space infinity
@article{10_21136_MB_2018_0026_18,
     author = {Ling, Amy Poh Ai and Shimoj\={o}, Masahiko},
     title = {Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data},
     journal = {Mathematica Bohemica},
     pages = {287--297},
     publisher = {mathdoc},
     volume = {144},
     number = {3},
     year = {2019},
     doi = {10.21136/MB.2018.0026-18},
     mrnumber = {3985858},
     zbl = {07088852},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/}
}
TY  - JOUR
AU  - Ling, Amy Poh Ai
AU  - Shimojō, Masahiko
TI  - Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data
JO  - Mathematica Bohemica
PY  - 2019
SP  - 287
EP  - 297
VL  - 144
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/
DO  - 10.21136/MB.2018.0026-18
LA  - en
ID  - 10_21136_MB_2018_0026_18
ER  - 
%0 Journal Article
%A Ling, Amy Poh Ai
%A Shimojō, Masahiko
%T Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data
%J Mathematica Bohemica
%D 2019
%P 287-297
%V 144
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/
%R 10.21136/MB.2018.0026-18
%G en
%F 10_21136_MB_2018_0026_18
Ling, Amy Poh Ai; Shimojō, Masahiko. Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data. Mathematica Bohemica, Tome 144 (2019) no. 3, pp. 287-297. doi : 10.21136/MB.2018.0026-18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2018.0026-18/

Cité par Sources :