Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem
Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 339-354
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We generalize some criteria of boundedness of $\mathbf {L}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Hayman's theorem).
DOI :
10.21136/MB.2017.0110-16
Classification :
30D60, 32A10, 32A17, 32A30
Keywords: analytic function; bidisc; bounded ${\mathbf L}$-index in joint variables; maximum modulus; partial derivative; Cauchy's integral formula
Keywords: analytic function; bidisc; bounded ${\mathbf L}$-index in joint variables; maximum modulus; partial derivative; Cauchy's integral formula
@article{10_21136_MB_2017_0110_16,
author = {Bandura, Andriy and Petrechko, Nataliia and Skaskiv, Oleh},
title = {Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of {Hayman's} theorem},
journal = {Mathematica Bohemica},
pages = {339--354},
publisher = {mathdoc},
volume = {143},
number = {4},
year = {2018},
doi = {10.21136/MB.2017.0110-16},
mrnumber = {3895260},
zbl = {06997370},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/}
}
TY - JOUR
AU - Bandura, Andriy
AU - Petrechko, Nataliia
AU - Skaskiv, Oleh
TI - Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem
JO - Mathematica Bohemica
PY - 2018
SP - 339
EP - 354
VL - 143
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/
DO - 10.21136/MB.2017.0110-16
LA - en
ID - 10_21136_MB_2017_0110_16
ER -
%0 Journal Article
%A Bandura, Andriy
%A Petrechko, Nataliia
%A Skaskiv, Oleh
%T Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem
%J Mathematica Bohemica
%D 2018
%P 339-354
%V 143
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/
%R 10.21136/MB.2017.0110-16
%G en
%F 10_21136_MB_2017_0110_16
Bandura, Andriy; Petrechko, Nataliia; Skaskiv, Oleh. Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 339-354. doi: 10.21136/MB.2017.0110-16
Cité par Sources :