Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem
Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 339-354
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We generalize some criteria of boundedness of $\mathbf {L}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Hayman's theorem).
We generalize some criteria of boundedness of $\mathbf {L}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Hayman's theorem).
DOI : 10.21136/MB.2017.0110-16
Classification : 30D60, 32A10, 32A17, 32A30
Keywords: analytic function; bidisc; bounded ${\mathbf L}$-index in joint variables; maximum modulus; partial derivative; Cauchy's integral formula
@article{10_21136_MB_2017_0110_16,
     author = {Bandura, Andriy and Petrechko, Nataliia and Skaskiv, Oleh},
     title = {Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of {Hayman's} theorem},
     journal = {Mathematica Bohemica},
     pages = {339--354},
     year = {2018},
     volume = {143},
     number = {4},
     doi = {10.21136/MB.2017.0110-16},
     mrnumber = {3895260},
     zbl = {06997370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/}
}
TY  - JOUR
AU  - Bandura, Andriy
AU  - Petrechko, Nataliia
AU  - Skaskiv, Oleh
TI  - Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem
JO  - Mathematica Bohemica
PY  - 2018
SP  - 339
EP  - 354
VL  - 143
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/
DO  - 10.21136/MB.2017.0110-16
LA  - en
ID  - 10_21136_MB_2017_0110_16
ER  - 
%0 Journal Article
%A Bandura, Andriy
%A Petrechko, Nataliia
%A Skaskiv, Oleh
%T Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem
%J Mathematica Bohemica
%D 2018
%P 339-354
%V 143
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/
%R 10.21136/MB.2017.0110-16
%G en
%F 10_21136_MB_2017_0110_16
Bandura, Andriy; Petrechko, Nataliia; Skaskiv, Oleh. Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 339-354. doi: 10.21136/MB.2017.0110-16

[1] Bandura, A.: New criteria of boundedness of L-index in joint variables for entire functions. Mat. Visn. Nauk. Tov. Im. Shevchenka 13 (2016), 58-67 Ukrainian. | JFM

[2] Bandura, A. I., Bordulyak, M. T., Skaskiv, O. B.: Sufficient conditions of boundedness of L-index in joint variables. Mat. Stud. 45 (2016), 12-26. | DOI | MR | JFM

[3] Bandura, A. I., Skaskiv, O. B.: Entire Functions of Several Variables of Bounded Index. Chyslo, Lviv (2015). | MR | JFM

[4] Bandura, A. I., Skaskiv, O. B.: Analytic in the unit ball functions of bounded $L$-index in direction. Avaible at | arXiv | MR

[5] Bandura, A. I., Petrechko, N. V., Skaskiv, O. B.: Analytic functions in a polydisc of bounded L-index in joint variables. Mat. Stud. 46 (2016), 72-80. | DOI | MR | JFM

[6] Bordulyak, M. T.: The space of entire functions in ${\Bbb C}^n$ of bounded $L$-index. Mat. Stud. 4 (1995), 53-58. | MR | JFM

[7] Bordulyak, M. T., Sheremeta, M. M.: Boundedness of the $L$-index of an entire function of several variables. Dopov./Dokl. Akad. Nauk Ukraï ni 9 (1993), 10-13 Ukrainian. | MR

[8] Krishna, J. Gopala, Shah, S. M.: Functions of bounded indices in one and several complex variables. Math. Essays dedicated to A. J. Macintyre Ohio Univ. Press, Athens, Ohio (1970), 223-235. | MR | JFM

[9] Hayman, W. K.: Differential inequalities and local valency. Pac. J. Math. 44 (1973), 117-137. | DOI | MR | JFM

[10] Kushnir, V. O., Sheremeta, M. M.: Analytic functions of bounded $l$-index. Mat. Stud. 12 (1999), 59-66. | MR | JFM

[11] Lepson, B.: Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index. Entire Funct. and Relat. Parts of Anal., La Jolla, Calif. 1966 Proc. Sympos. Pure Math. 11, AMS, Providence, Rhode Island (1968), 298-307. | MR | JFM

[12] Nuray, F., Patterson, R. F.: Multivalence of bivariate functions of bounded index. Matematiche 70 (2015), 225-233. | DOI | MR | JFM

[13] Salmassi, M.: Functions of bounded indices in several variables. Indian J. Math. 31 (1989), 249-257. | MR | JFM

[14] Sheremeta, M.: Analytic Functions of Bounded Index. Mathematical Studies Monograph Series 6. VNTL Publishers, Lviv (1999). | MR | JFM

[15] Strochyk, S. N., Sheremeta, M. M.: Analytic in the unit disc functions of bounded index. Dopov./Dokl. Akad. Nauk Ukraï ni 1 (1993), 19-22 Ukrainian. | MR | JFM

Cité par Sources :