Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem
Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 339-354.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We generalize some criteria of boundedness of $\mathbf {L}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Hayman's theorem).
DOI : 10.21136/MB.2017.0110-16
Classification : 30D60, 32A10, 32A17, 32A30
Keywords: analytic function; bidisc; bounded ${\mathbf L}$-index in joint variables; maximum modulus; partial derivative; Cauchy's integral formula
@article{10_21136_MB_2017_0110_16,
     author = {Bandura, Andriy and Petrechko, Nataliia and Skaskiv, Oleh},
     title = {Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of {Hayman's} theorem},
     journal = {Mathematica Bohemica},
     pages = {339--354},
     publisher = {mathdoc},
     volume = {143},
     number = {4},
     year = {2018},
     doi = {10.21136/MB.2017.0110-16},
     mrnumber = {3895260},
     zbl = {06997370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/}
}
TY  - JOUR
AU  - Bandura, Andriy
AU  - Petrechko, Nataliia
AU  - Skaskiv, Oleh
TI  - Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem
JO  - Mathematica Bohemica
PY  - 2018
SP  - 339
EP  - 354
VL  - 143
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/
DO  - 10.21136/MB.2017.0110-16
LA  - en
ID  - 10_21136_MB_2017_0110_16
ER  - 
%0 Journal Article
%A Bandura, Andriy
%A Petrechko, Nataliia
%A Skaskiv, Oleh
%T Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem
%J Mathematica Bohemica
%D 2018
%P 339-354
%V 143
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/
%R 10.21136/MB.2017.0110-16
%G en
%F 10_21136_MB_2017_0110_16
Bandura, Andriy; Petrechko, Nataliia; Skaskiv, Oleh. Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 339-354. doi : 10.21136/MB.2017.0110-16. http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/

Cité par Sources :