Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_MB_2017_0110_16, author = {Bandura, Andriy and Petrechko, Nataliia and Skaskiv, Oleh}, title = {Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of {Hayman's} theorem}, journal = {Mathematica Bohemica}, pages = {339--354}, publisher = {mathdoc}, volume = {143}, number = {4}, year = {2018}, doi = {10.21136/MB.2017.0110-16}, mrnumber = {3895260}, zbl = {06997370}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/} }
TY - JOUR AU - Bandura, Andriy AU - Petrechko, Nataliia AU - Skaskiv, Oleh TI - Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem JO - Mathematica Bohemica PY - 2018 SP - 339 EP - 354 VL - 143 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/ DO - 10.21136/MB.2017.0110-16 LA - en ID - 10_21136_MB_2017_0110_16 ER -
%0 Journal Article %A Bandura, Andriy %A Petrechko, Nataliia %A Skaskiv, Oleh %T Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem %J Mathematica Bohemica %D 2018 %P 339-354 %V 143 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/ %R 10.21136/MB.2017.0110-16 %G en %F 10_21136_MB_2017_0110_16
Bandura, Andriy; Petrechko, Nataliia; Skaskiv, Oleh. Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman's theorem. Mathematica Bohemica, Tome 143 (2018) no. 4, pp. 339-354. doi : 10.21136/MB.2017.0110-16. http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0110-16/
Cité par Sources :