On the generalization of two results of Cao and Zhang
Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 357-380
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This paper studies the uniqueness of meromorphic functions $$f^{n}\prod _{i=1}^{k}(f^{(i)})^{n_{i}}\quad \mbox {and}\quad g^{n}\prod _{i=1}^{k}(g^{(i)})^{n_{i}}$$ that share two values, where $n, n_{k}, k\in \mathbb {N}$, $n_{i}\in \mathbb {N}\cup \{0\}$, $i=1,2,\ldots ,k-1$. The results significantly rectify, improve and generalize the results due to Cao and Zhang (2012).
This paper studies the uniqueness of meromorphic functions $$f^{n}\prod _{i=1}^{k}(f^{(i)})^{n_{i}}\quad \mbox {and}\quad g^{n}\prod _{i=1}^{k}(g^{(i)})^{n_{i}}$$ that share two values, where $n, n_{k}, k\in \mathbb {N}$, $n_{i}\in \mathbb {N}\cup \{0\}$, $i=1,2,\ldots ,k-1$. The results significantly rectify, improve and generalize the results due to Cao and Zhang (2012).
DOI :
10.21136/MB.2017.0021-15
Classification :
30D35
Keywords: uniqueness; meromorphic function; weighted sharing; nonlinear differential polynomials
Keywords: uniqueness; meromorphic function; weighted sharing; nonlinear differential polynomials
@article{10_21136_MB_2017_0021_15,
author = {Majumder, Sujoy},
title = {On the generalization of two results of {Cao} and {Zhang}},
journal = {Mathematica Bohemica},
pages = {357--380},
year = {2017},
volume = {142},
number = {4},
doi = {10.21136/MB.2017.0021-15},
mrnumber = {3739023},
zbl = {06819591},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2017.0021-15/}
}
Majumder, Sujoy. On the generalization of two results of Cao and Zhang. Mathematica Bohemica, Tome 142 (2017) no. 4, pp. 357-380. doi: 10.21136/MB.2017.0021-15
Cité par Sources :