Baire one functions and their sets of discontinuity
Mathematica Bohemica, Tome 141 (2016) no. 1, pp. 109-114.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A characterization of functions in the first Baire class in terms of their sets of discontinuity is given. More precisely, a function $f\colon \mathbb {R}\rightarrow \mathbb {R}$ is of the first Baire class if and only if for each $\epsilon >0$ there is a sequence of closed sets $\{C_n\}_{n=1}^{\infty }$ such that $D_f=\bigcup _{n=1}^{\infty }C_n$ and $\omega _f(C_n)\epsilon $ for each $n$ where $$ \omega _f(C_n)=\sup \{|f(x)-f(y)|\colon x,y \in C_n\} $$ and $D_f$ denotes the set of points of discontinuity of $f$. The proof of the main theorem is based on a recent $\epsilon $-$\delta $ characterization of Baire class one functions as well as on a well-known theorem due to Lebesgue. Some direct applications of the theorem are discussed in the paper.
DOI : 10.21136/MB.2016.9
Classification : 26A21
Keywords: Baire class one function; set of points of discontinuity; oscillation of a function
@article{10_21136_MB_2016_9,
     author = {Fenecios, Jonald P. and Cabral, Emmanuel A. and Racca, Abraham P.},
     title = {Baire one functions and their sets of discontinuity},
     journal = {Mathematica Bohemica},
     pages = {109--114},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {2016},
     doi = {10.21136/MB.2016.9},
     mrnumber = {3475142},
     zbl = {06562163},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.9/}
}
TY  - JOUR
AU  - Fenecios, Jonald P.
AU  - Cabral, Emmanuel A.
AU  - Racca, Abraham P.
TI  - Baire one functions and their sets of discontinuity
JO  - Mathematica Bohemica
PY  - 2016
SP  - 109
EP  - 114
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.9/
DO  - 10.21136/MB.2016.9
LA  - en
ID  - 10_21136_MB_2016_9
ER  - 
%0 Journal Article
%A Fenecios, Jonald P.
%A Cabral, Emmanuel A.
%A Racca, Abraham P.
%T Baire one functions and their sets of discontinuity
%J Mathematica Bohemica
%D 2016
%P 109-114
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.9/
%R 10.21136/MB.2016.9
%G en
%F 10_21136_MB_2016_9
Fenecios, Jonald P.; Cabral, Emmanuel A.; Racca, Abraham P. Baire one functions and their sets of discontinuity. Mathematica Bohemica, Tome 141 (2016) no. 1, pp. 109-114. doi : 10.21136/MB.2016.9. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.9/

Cité par Sources :