A-Browder-type theorems for direct sums of operators
Mathematica Bohemica, Tome 141 (2016) no. 1, pp. 99-108.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties $(\rm SBaw)$, $(\rm SBab)$, $(\rm SBw)$ and $(\rm SBb)$ are not preserved under direct sums of operators. \endgraf However, we prove that if $S$ and $T$ are bounded linear operators acting on Banach spaces and having the property $(\rm SBab)$, then $S\oplus T$ has the property $(\rm SBab)$ if and only if $\sigma _{\rm SBF_+^-}(S\oplus T)=\sigma _{\rm SBF_+^-}(S)\cup \sigma _{\rm SBF_+^-}(T)$, where $\sigma _{\rm SBF_{+}^{-}}(T)$ is the upper semi-B-Weyl spectrum of $T$. \endgraf We obtain analogous preservation results for the properties $(\rm SBaw)$, $(\rm SBb)$ and $(\rm SBw)$ with extra assumptions.
DOI : 10.21136/MB.2016.8
Classification : 47A10, 47A11, 47A53, 47A55
Keywords: property $(\rm SBaw)$; property $(\rm SBab)$; upper semi-B-Weyl spectrum; direct sum
@article{10_21136_MB_2016_8,
     author = {Berkani, Mohammed and Sarih, Mustapha and Zariouh, Hassan},
     title = {A-Browder-type theorems for direct sums of operators},
     journal = {Mathematica Bohemica},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {2016},
     doi = {10.21136/MB.2016.8},
     mrnumber = {3475141},
     zbl = {06562162},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.8/}
}
TY  - JOUR
AU  - Berkani, Mohammed
AU  - Sarih, Mustapha
AU  - Zariouh, Hassan
TI  - A-Browder-type theorems for direct sums of operators
JO  - Mathematica Bohemica
PY  - 2016
SP  - 99
EP  - 108
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.8/
DO  - 10.21136/MB.2016.8
LA  - en
ID  - 10_21136_MB_2016_8
ER  - 
%0 Journal Article
%A Berkani, Mohammed
%A Sarih, Mustapha
%A Zariouh, Hassan
%T A-Browder-type theorems for direct sums of operators
%J Mathematica Bohemica
%D 2016
%P 99-108
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.8/
%R 10.21136/MB.2016.8
%G en
%F 10_21136_MB_2016_8
Berkani, Mohammed; Sarih, Mustapha; Zariouh, Hassan. A-Browder-type theorems for direct sums of operators. Mathematica Bohemica, Tome 141 (2016) no. 1, pp. 99-108. doi : 10.21136/MB.2016.8. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.8/

Cité par Sources :