$C^1$ self-maps on closed manifolds with finitely many periodic points all of them hyperbolic
Mathematica Bohemica, Tome 141 (2016) no. 1, pp. 83-90.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a connected closed manifold and $f$ a self-map on $X$. We say that $f$ is almost quasi-unipotent if every eigenvalue $\lambda $ of the map $f_{*k}$ (the induced map on the \mbox {$k$-th} homology group of $X$) which is neither a root of unity, nor a zero, satisfies that the sum of the multiplicities of $\lambda $ as eigenvalue of all the maps $f_{*k}$ with $k$ odd is equal to the sum of the multiplicities of $\lambda $ as eigenvalue of all the maps $f_{*k}$ with $k$ even. \endgraf We prove that if $f$ is $C^1$ having finitely many periodic points all of them hyperbolic, then $f$ is almost quasi-unipotent.
DOI : 10.21136/MB.2016.6
Classification : 37C05, 37C25, 37C30
Keywords: hyperbolic periodic point; differentiable map; Lefschetz number; Lefschetz zeta function; quasi-unipotent map; almost quasi-unipotent map
@article{10_21136_MB_2016_6,
     author = {Llibre, Jaume and Sirvent, V{\'\i}ctor F.},
     title = {$C^1$ self-maps on closed manifolds with finitely many periodic points all of them hyperbolic},
     journal = {Mathematica Bohemica},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {2016},
     doi = {10.21136/MB.2016.6},
     mrnumber = {3475139},
     zbl = {06562160},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.6/}
}
TY  - JOUR
AU  - Llibre, Jaume
AU  - Sirvent, Víctor F.
TI  - $C^1$ self-maps on closed manifolds with finitely many periodic points all of them hyperbolic
JO  - Mathematica Bohemica
PY  - 2016
SP  - 83
EP  - 90
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.6/
DO  - 10.21136/MB.2016.6
LA  - en
ID  - 10_21136_MB_2016_6
ER  - 
%0 Journal Article
%A Llibre, Jaume
%A Sirvent, Víctor F.
%T $C^1$ self-maps on closed manifolds with finitely many periodic points all of them hyperbolic
%J Mathematica Bohemica
%D 2016
%P 83-90
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.6/
%R 10.21136/MB.2016.6
%G en
%F 10_21136_MB_2016_6
Llibre, Jaume; Sirvent, Víctor F. $C^1$ self-maps on closed manifolds with finitely many periodic points all of them hyperbolic. Mathematica Bohemica, Tome 141 (2016) no. 1, pp. 83-90. doi : 10.21136/MB.2016.6. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.6/

Cité par Sources :