Linear maps preserving $A$-unitary operators
Mathematica Bohemica, Tome 141 (2016) no. 1, pp. 59-70.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal {H}$ be a complex Hilbert space, $A$ a positive operator with closed range in $\mathscr {B}(\mathcal {H})$ and $\mathscr {B}_{A}(\mathcal {H})$ the sub-algebra of $\mathscr {B}(\mathcal {H})$ of all \mbox {$A$-self}-adjoint operators. Assume $\phi \colon \mathscr {B}_{A}(\mathcal {H})$ onto itself is a linear continuous map. This paper shows that if $\phi $ preserves \mbox {$A$-unitary} operators such that $\phi (I)=P$ then $\psi $ defined by $\psi (T)=P\phi (PT)$ is a homomorphism or an anti-homomorphism and $\psi (T^{\sharp })=\psi (T)^{\sharp }$ for all $T \in \mathscr {B}_{A}(\mathcal {H})$, where $P=A^{+}A$ and $A^{+}$ is the Moore-Penrose inverse of $A$. A similar result is also true if $\phi $ preserves \mbox {$A$-quasi}-unitary operators in both directions such that there exists an operator $T$ satisfying $P\phi (T)=P$.
DOI : 10.21136/MB.2016.4
Classification : 15A86, 46C50
Keywords: linear preserver problem; semi-inner product
@article{10_21136_MB_2016_4,
     author = {Chahbi, Abdellatif and Kabbaj, Samir and Charifi, Ahmed},
     title = {Linear maps preserving $A$-unitary operators},
     journal = {Mathematica Bohemica},
     pages = {59--70},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {2016},
     doi = {10.21136/MB.2016.4},
     mrnumber = {3475137},
     zbl = {06562158},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.4/}
}
TY  - JOUR
AU  - Chahbi, Abdellatif
AU  - Kabbaj, Samir
AU  - Charifi, Ahmed
TI  - Linear maps preserving $A$-unitary operators
JO  - Mathematica Bohemica
PY  - 2016
SP  - 59
EP  - 70
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.4/
DO  - 10.21136/MB.2016.4
LA  - en
ID  - 10_21136_MB_2016_4
ER  - 
%0 Journal Article
%A Chahbi, Abdellatif
%A Kabbaj, Samir
%A Charifi, Ahmed
%T Linear maps preserving $A$-unitary operators
%J Mathematica Bohemica
%D 2016
%P 59-70
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.4/
%R 10.21136/MB.2016.4
%G en
%F 10_21136_MB_2016_4
Chahbi, Abdellatif; Kabbaj, Samir; Charifi, Ahmed. Linear maps preserving $A$-unitary operators. Mathematica Bohemica, Tome 141 (2016) no. 1, pp. 59-70. doi : 10.21136/MB.2016.4. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.4/

Cité par Sources :