The Kurzweil integral in financial market modeling
Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 261-286.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Certain financial market strategies are known to exhibit a hysteretic structure similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The main difference is that in financial markets, the spontaneous occurrence of discontinuities in the time evolution has to be taken into account. We show that one particular market model considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators, which are extended in order to include possible discontinuities both in time and in memory. The main analytical tool is the Kurzweil integral formalism, and the main result proves the well-posedness of the process in the space of right-continuous regulated functions.
DOI : 10.21136/MB.2016.18
Classification : 26A39, 34C55, 91B26
Keywords: hysteresis; Prandtl-Ishlinskii operator; Kurzweil integral; market model
@article{10_21136_MB_2016_18,
     author = {Krej\v{c}{\'\i}, Pavel and Lamba, Harbir and Monteiro, Giselle Antunes and Rachinskii, Dmitrii},
     title = {The {Kurzweil} integral in financial market modeling},
     journal = {Mathematica Bohemica},
     pages = {261--286},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {2016},
     doi = {10.21136/MB.2016.18},
     mrnumber = {3499787},
     zbl = {06587865},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.18/}
}
TY  - JOUR
AU  - Krejčí, Pavel
AU  - Lamba, Harbir
AU  - Monteiro, Giselle Antunes
AU  - Rachinskii, Dmitrii
TI  - The Kurzweil integral in financial market modeling
JO  - Mathematica Bohemica
PY  - 2016
SP  - 261
EP  - 286
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.18/
DO  - 10.21136/MB.2016.18
LA  - en
ID  - 10_21136_MB_2016_18
ER  - 
%0 Journal Article
%A Krejčí, Pavel
%A Lamba, Harbir
%A Monteiro, Giselle Antunes
%A Rachinskii, Dmitrii
%T The Kurzweil integral in financial market modeling
%J Mathematica Bohemica
%D 2016
%P 261-286
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.18/
%R 10.21136/MB.2016.18
%G en
%F 10_21136_MB_2016_18
Krejčí, Pavel; Lamba, Harbir; Monteiro, Giselle Antunes; Rachinskii, Dmitrii. The Kurzweil integral in financial market modeling. Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 261-286. doi : 10.21136/MB.2016.18. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.18/

Cité par Sources :