Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions
Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 239-259.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A couple ($\sigma ,\tau $) of lower and upper slopes for the resonant second order boundary value problem $$ x'' = f(t,x,x'), \quad x(0) = 0,\quad x'(1) = \int _0^1 x'(s) {\rm d}g(s), $$ with $g$ increasing on $[0,1]$ such that $\int _0^1 dg = 1$, is a couple of functions $\sigma , \tau \in C^1([0,1])$ such that $\sigma (t) \leq \tau (t)$ for all $t \in [0,1]$, \begin {gather} \sigma '(t) \geq f(t,x,\sigma (t)), \quad \sigma (1) \leq \int _0^1 \sigma (s) {\rm d}g(s),\nonumber \\ \tau '(t) \leq f(t,x,\tau (t)), \quad \tau (1) \geq \int _0^1 \tau (s) {\rm d}g(s),\nonumber \end {gather} in the stripe $\int _0^t\sigma (s) {\rm d}s \leq x \leq \int _0^t \tau (s) {\rm d}s$ and $t \in [0,1]$. It is proved that the existence of such a couple $(\sigma ,\tau )$ implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.
DOI : 10.21136/MB.2016.17
Classification : 34B10, 34B15, 47H11
Keywords: nonlocal boundary value problem; lower solution; upper solution; lower slope; upper slope; Leray-Schauder degree
@article{10_21136_MB_2016_17,
     author = {Mawhin, Jean and Szyma\'nska-D\k{e}bowska, Katarzyna},
     title = {Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions},
     journal = {Mathematica Bohemica},
     pages = {239--259},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {2016},
     doi = {10.21136/MB.2016.17},
     mrnumber = {3499786},
     zbl = {06587864},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.17/}
}
TY  - JOUR
AU  - Mawhin, Jean
AU  - Szymańska-Dębowska, Katarzyna
TI  - Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions
JO  - Mathematica Bohemica
PY  - 2016
SP  - 239
EP  - 259
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.17/
DO  - 10.21136/MB.2016.17
LA  - en
ID  - 10_21136_MB_2016_17
ER  - 
%0 Journal Article
%A Mawhin, Jean
%A Szymańska-Dębowska, Katarzyna
%T Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions
%J Mathematica Bohemica
%D 2016
%P 239-259
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.17/
%R 10.21136/MB.2016.17
%G en
%F 10_21136_MB_2016_17
Mawhin, Jean; Szymańska-Dębowska, Katarzyna. Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions. Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 239-259. doi : 10.21136/MB.2016.17. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.17/

Cité par Sources :