Henstock-Kurzweil integral on ${\rm BV}$ sets
Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 217-237.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The generalized Riemann integral of Pfeffer (1991) is defined on all bounded $\rm BV$ subsets of $\mathbb R^n$, but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of $\sigma $-finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of $\rm BV$ sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect to the formation of improper integrals. Its definition in $\mathbb R$ coincides with the Henstock-Kurzweil definition of the Denjoy-Perron integral.
DOI : 10.21136/MB.2016.16
Classification : 26B20, 28A25
Keywords: Henstock-Kurzweil integral; charge; $\rm BV$ set
@article{10_21136_MB_2016_16,
     author = {Mal\'y, Jan and Pfeffer, Washek F.},
     title = {Henstock-Kurzweil integral on ${\rm BV}$ sets},
     journal = {Mathematica Bohemica},
     pages = {217--237},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {2016},
     doi = {10.21136/MB.2016.16},
     mrnumber = {3499785},
     zbl = {06587863},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.16/}
}
TY  - JOUR
AU  - Malý, Jan
AU  - Pfeffer, Washek F.
TI  - Henstock-Kurzweil integral on ${\rm BV}$ sets
JO  - Mathematica Bohemica
PY  - 2016
SP  - 217
EP  - 237
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.16/
DO  - 10.21136/MB.2016.16
LA  - en
ID  - 10_21136_MB_2016_16
ER  - 
%0 Journal Article
%A Malý, Jan
%A Pfeffer, Washek F.
%T Henstock-Kurzweil integral on ${\rm BV}$ sets
%J Mathematica Bohemica
%D 2016
%P 217-237
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.16/
%R 10.21136/MB.2016.16
%G en
%F 10_21136_MB_2016_16
Malý, Jan; Pfeffer, Washek F. Henstock-Kurzweil integral on ${\rm BV}$ sets. Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 217-237. doi : 10.21136/MB.2016.16. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.16/

Cité par Sources :