On the opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations
Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 183-215.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The Cauchy problem for the system of linear generalized ordinary differential equations in the J. Kurzweil sense ${\rm d} x(t)={\rm d} A_0(t)\cdot x(t)+{\rm d} f_0(t)$, $x(t_{0})=\nobreak c_0$ $(t\in I)$ with a unique solution $x_0$ is considered. Necessary and sufficient conditions are obtained for a sequence of the Cauchy problems ${\rm d} x(t)={\rm d} A_k(t)\cdot x(t)+{\rm d} f_k(t)$, $x(t_{k})=c_k$ $(k=1,2,\dots )$ to have a unique solution $x_k$ for any sufficiently large $k$ such that $x_k(t)\to x_0(t)$ uniformly on $I$. Presented results are analogous to the sufficient conditions due to Z. Opial for linear ordinary differential systems. Moreover, efficient sufficient conditions for the problem of well-posedness are given.
DOI : 10.21136/MB.2016.15
Classification : 34A12, 34A30, 34K06
Keywords: linear system of generalized ordinary differential equations in the Kurzweil sense; Cauchy problem; well-posedness; Opial type necessary condition; Opial type sufficient condition; efficient sufficient condition
@article{10_21136_MB_2016_15,
     author = {Ashordia, Malkhaz},
     title = {On the opial type criterion for the well-posedness of the {Cauchy} problem for linear systems of generalized ordinary differential equations},
     journal = {Mathematica Bohemica},
     pages = {183--215},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {2016},
     doi = {10.21136/MB.2016.15},
     mrnumber = {3499784},
     zbl = {06587862},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.15/}
}
TY  - JOUR
AU  - Ashordia, Malkhaz
TI  - On the opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations
JO  - Mathematica Bohemica
PY  - 2016
SP  - 183
EP  - 215
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.15/
DO  - 10.21136/MB.2016.15
LA  - en
ID  - 10_21136_MB_2016_15
ER  - 
%0 Journal Article
%A Ashordia, Malkhaz
%T On the opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations
%J Mathematica Bohemica
%D 2016
%P 183-215
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.15/
%R 10.21136/MB.2016.15
%G en
%F 10_21136_MB_2016_15
Ashordia, Malkhaz. On the opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations. Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 183-215. doi : 10.21136/MB.2016.15. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.15/

Cité par Sources :