On the double Lusin condition and convergence theorem for Kurzweil-Henstock type integrals
Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 153-168.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Equiintegrability in a compact interval $E$ may be defined as a uniform integrability property that involves both the integrand $f_n$ and the corresponding primitive $F_n$. The pointwise convergence of the integrands $f_n$ to some $f$ and the equiintegrability of the functions $f_n$ together imply that $f$ is also integrable with primitive $F$ and that the primitives $F_n$ converge uniformly to $F$. In this paper, another uniform integrability property called uniform double Lusin condition introduced in the papers E. Cabral and P. Y. Lee (2001/2002) is revisited. Under the assumption of pointwise convergence of the integrands $f_n$, the three uniform integrability properties, namely equiintegrability and the two versions of the uniform double Lusin condition, are all equivalent. The first version of the double Lusin condition and its corresponding uniform double Lusin convergence theorem are also extended into the division space.
DOI : 10.21136/MB.2016.13
Classification : 26A39
Keywords: Kurzweil-Henstock integral; $g$-integral; double Lusin condition; uniform double Lusin condition
@article{10_21136_MB_2016_13,
     author = {Racca, Abraham and Cabral, Emmanuel},
     title = {On the double {Lusin} condition and convergence theorem for {Kurzweil-Henstock} type integrals},
     journal = {Mathematica Bohemica},
     pages = {153--168},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {2016},
     doi = {10.21136/MB.2016.13},
     mrnumber = {3499782},
     zbl = {06587860},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.13/}
}
TY  - JOUR
AU  - Racca, Abraham
AU  - Cabral, Emmanuel
TI  - On the double Lusin condition and convergence theorem for Kurzweil-Henstock type integrals
JO  - Mathematica Bohemica
PY  - 2016
SP  - 153
EP  - 168
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.13/
DO  - 10.21136/MB.2016.13
LA  - en
ID  - 10_21136_MB_2016_13
ER  - 
%0 Journal Article
%A Racca, Abraham
%A Cabral, Emmanuel
%T On the double Lusin condition and convergence theorem for Kurzweil-Henstock type integrals
%J Mathematica Bohemica
%D 2016
%P 153-168
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.13/
%R 10.21136/MB.2016.13
%G en
%F 10_21136_MB_2016_13
Racca, Abraham; Cabral, Emmanuel. On the double Lusin condition and convergence theorem for Kurzweil-Henstock type integrals. Mathematica Bohemica, Tome 141 (2016) no. 2, pp. 153-168. doi : 10.21136/MB.2016.13. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.13/

Cité par Sources :