Keywords: normal space; (weakly) densely normal space; (weakly) $\theta $-normal space; almost normal space; almost $\beta $-normal space; $\kappa $-normal space; (weakly) $\beta $-normal space
@article{10_21136_MB_2016_0048_15,
author = {Das, Ananga Kumar and Bhat, Pratibha and Gupta, Ria},
title = {Factorizations of normality via generalizations of $\beta $-normality},
journal = {Mathematica Bohemica},
pages = {463--473},
year = {2016},
volume = {141},
number = {4},
doi = {10.21136/MB.2016.0048-15},
mrnumber = {3576793},
zbl = {06674856},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0048-15/}
}
TY - JOUR AU - Das, Ananga Kumar AU - Bhat, Pratibha AU - Gupta, Ria TI - Factorizations of normality via generalizations of $\beta $-normality JO - Mathematica Bohemica PY - 2016 SP - 463 EP - 473 VL - 141 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0048-15/ DO - 10.21136/MB.2016.0048-15 LA - en ID - 10_21136_MB_2016_0048_15 ER -
%0 Journal Article %A Das, Ananga Kumar %A Bhat, Pratibha %A Gupta, Ria %T Factorizations of normality via generalizations of $\beta $-normality %J Mathematica Bohemica %D 2016 %P 463-473 %V 141 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0048-15/ %R 10.21136/MB.2016.0048-15 %G en %F 10_21136_MB_2016_0048_15
Das, Ananga Kumar; Bhat, Pratibha; Gupta, Ria. Factorizations of normality via generalizations of $\beta $-normality. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 463-473. doi: 10.21136/MB.2016.0048-15
[1] Arhangel'skii, A. V.: Relative topological properties and relative topological spaces. Topology Appl. 70 87-99 (1996). | DOI | MR | Zbl
[2] Arhangel'skii, A. V., Ludwig, L.: On $\alpha$-normal and $\beta$-normal spaces. Commentat. Math. Univ. Carol. 42 (2001), 507-519. | MR | Zbl
[3] Das, A. K.: Simultaneous generalizations of regularity and normality. Eur. J. Pure Appl. Math. 4 (2011), 34-41. | MR | Zbl
[4] Das, A. K.: A note on spaces between normal and $\kappa$-normal spaces. Filomat 27 (2013), 85-88. | DOI | MR
[5] Das, A. K., Bhat, P.: A class of spaces containing all densely normal spaces. Indian J. Math. 57 (2015), 217-224. | MR | Zbl
[6] Das, A. K., Bhat, P., Tartir, J. K.: On a simultaneous generalization of $\beta$-normality and almost $\beta$-normality. (to appear) in Filomat. | MR
[7] R. F. Dickman, Jr., J. R. Porter: {$\theta $}-perfect and $\theta $-absolutely closed functions. Ill. J. Math. 21 (1977), 42-60. | DOI | MR | Zbl
[8] Kohli, J. K., Das, A. K.: New normality axioms and decompositions of normality. Glas. Mat. Ser. (3) 37 (2002), 163-173. | MR | Zbl
[9] Kohli, J. K., Das, A. K.: On functionally $\theta$-normal spaces. Appl. Gen. Topol. 6 (2005), 1-14. | DOI | MR | Zbl
[10] Kohli, J. K., Das, A. K.: A class of spaces containing all generalized absolutely closed (almost compact) spaces. Appl. Gen. Topol. 7 (2006), 233-244. | DOI | MR | Zbl
[11] Kohli, J. K., Singh, D.: Weak normality properties and factorizations of normality. Acta Math. Hung. 110 (2006), 67-80. | DOI | MR | Zbl
[12] Mack, J.: Countable paracompactness and weak normality properties. Trans. Am. Math. Soc. 148 (1970), 265-272. | DOI | MR | Zbl
[13] Murtinová, E.: A $\beta$-normal Tychonoff space which is not normal. Commentat. Math. Univ. Carol. 43 (2002), 159-164. | MR | Zbl
[14] Singal, M. K., Arya, S. P.: Almost normal and almost completely regular spaces. Glas. Mat. Ser. (3) 5 (25) (1970), 141-152. | MR | Zbl
[15] Singal, M. K., Singal, A. R.: Mildly normal spaces. Kyungpook Math. J. 13 (1973), 27-31. | MR | Zbl
[16] Ščepin, E. V.: Real functions, and spaces that are nearly normal. Sibirsk. Mat. Ž. 13 (1972), 1182-1196, 1200 Russian. | MR
[17] L. A. Steen, J. A. Seebach, Jr.: Counterexamples in Topology. Springer, New York (1978). | MR | Zbl
[18] Veličko, N. V.: {$H$}-closed topological spaces. Mat. Sb. (N.S.) 70 (112) (1966), Russian 98-112. | MR
Cité par Sources :