Some relations on Humbert matrix polynomials
Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 407-429
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Humbert matrix polynomials were first studied by Khammash and Shehata (2012). Our goal is to derive some of their basic relations involving the Humbert matrix polynomials and then study several generating matrix functions, hypergeometric matrix representations, matrix differential equation and expansions in series of some relatively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and modified Laguerre. Finally, some definitions of generalized Humbert matrix polynomials also of two, three and several index are derived.
The Humbert matrix polynomials were first studied by Khammash and Shehata (2012). Our goal is to derive some of their basic relations involving the Humbert matrix polynomials and then study several generating matrix functions, hypergeometric matrix representations, matrix differential equation and expansions in series of some relatively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and modified Laguerre. Finally, some definitions of generalized Humbert matrix polynomials also of two, three and several index are derived.
DOI : 10.21136/MB.2016.0019-14
Classification : 15A60, 33C45, 33C55, 33E20
Keywords: hypergeometric matrix function; Humbert matrix polynomials; matrix functional calculus; generating matrix function; matrix differential equation
@article{10_21136_MB_2016_0019_14,
     author = {Shehata, Ayman},
     title = {Some relations on {Humbert} matrix polynomials},
     journal = {Mathematica Bohemica},
     pages = {407--429},
     year = {2016},
     volume = {141},
     number = {4},
     doi = {10.21136/MB.2016.0019-14},
     mrnumber = {3576790},
     zbl = {06674853},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0019-14/}
}
TY  - JOUR
AU  - Shehata, Ayman
TI  - Some relations on Humbert matrix polynomials
JO  - Mathematica Bohemica
PY  - 2016
SP  - 407
EP  - 429
VL  - 141
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0019-14/
DO  - 10.21136/MB.2016.0019-14
LA  - en
ID  - 10_21136_MB_2016_0019_14
ER  - 
%0 Journal Article
%A Shehata, Ayman
%T Some relations on Humbert matrix polynomials
%J Mathematica Bohemica
%D 2016
%P 407-429
%V 141
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0019-14/
%R 10.21136/MB.2016.0019-14
%G en
%F 10_21136_MB_2016_0019_14
Shehata, Ayman. Some relations on Humbert matrix polynomials. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 407-429. doi: 10.21136/MB.2016.0019-14

[1] Aktaş, R.: A new multivariable extension of Humbert matrix polynomials. AIP Publishing LLC Rhodes, Greece AIP Conference Proceedings 1558: Proc. Int. Conf. on Numerical Analysis and Applied Mathematics (2013), 1128-1131 T. Simos et al. \DOI 10.1063/1.4825706. | DOI

[2] Aktaş, R.: A note on multivariable Humbert matrix polynomials. Gazi Univ. J. Sci. 27 (2014), 747-754.

[3] Aktaş, R., Çekim, B., Çevik, A.: Extended Jacobi matrix polynomials. Util. Math. 92 (2013), 47-64. | MR

[4] Aktaş, R., Çekim, B., Şahin, R.: The matrix version for the multivariable Humbert polynomials. Miskolc Math. Notes 13 (2012), 197-208. | DOI | MR | Zbl

[5] Altın, A., Çekim, B.: Generating matrix functions for Chebyshev matrix polynomials of the second kind. Hacet. J. Math. Stat. 41 (2012), 25-32. | MR | Zbl

[6] Altın, A., Çekim, B.: Some properties associated with Hermite matrix polynomials. Util. Math. 88 (2012), 171-181. | MR | Zbl

[7] Altın, A., Çekim, B.: Some miscellaneous properties for Gegenbauer matrix polynomials. Util. Math. 92 (2013), 377-387. | MR | Zbl

[8] Çekim, B., Altın, A., Aktaş, R.: Some relations satisfied by orthogonal matrix polynomials. Hacet. J. Math. Stat. 40 (2011), 241-253. | MR | Zbl

[9] Çekim, B., Altın, A., Aktaş, R.: Some new results for Jacobi matrix polynomials. Filomat 27 (2013), 713-719. | DOI | MR

[10] Defez, E., Jódar, L.: Some applications of the Hermite matrix polynomials series expansions. J. Comput. Appl. Math. 99 (1998), 105-117. | DOI | MR | Zbl

[11] Defez, E., Jódar, L.: Chebyshev matrix polynomials and second order matrix differential equations. Util. Math. 61 (2002), 107-123. | MR | Zbl

[12] Defez, E., Jódar, L., Law, A.: Jacobi matrix differential equation, polynomial solutions, and their properties. Comput. Math. Appl. 48 (2004), 789-803. | DOI | MR | Zbl

[13] Dunford, N., Schwartz, J. T.: Linear Operators. Part I, General Theory. Pure and Applied Mathematics 7 A Wiley-Interscience Publishers, John Wiley & Sons, New York (1958). | MR

[14] James, A. T.: Special functions of matrix and single argument in statistics. Theory and Application of Special Functions, Proc. Advanced Sem., Math. Res. Center, Madison, Wis. R. A. Askey Academic Press, New York (1975), 497-520. | MR | Zbl

[15] Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations. Approximation Theory Appl. 12 (1996), 20-30. | MR

[16] Jódar, L., Company, R., Ponsoda, E.: Orthogonal matrix polynomials and systems of second order differential equations. Differ. Equ. Dyn. Syst. 3 (1995), 269-288. | MR | Zbl

[17] Jódar, L., Cortés, J. C.: On the hypergeometric matrix function. J. Comput. Appl. Math. 99 (1998), 205-217. | DOI | MR | Zbl

[18] Jódar, L., Cortés, J. C.: Closed form general solution of the hypergeometric matrix differential equation. Math. Comput. Modelling 32 (2000), 1017-1028. | DOI | MR | Zbl

[19] Jódar, L., Defez, E.: On Hermite matrix polynomials and Hermite matrix functions. Approximation Theory Appl. 14 (1998), 36-48. | MR

[20] Jódar, L., Sastre, J.: On Laguerre matrix polynomials. Util. Math. 53 (1998), 37-48. | MR | Zbl

[21] Kargin, L., Kurt, V.: Some relations on Hermite matrix polynomials. Math. Comput. Appl. 18 (2013), 323-329. | MR

[22] Khammash, G. S., Shehata, A.: On Humbert matrix polynomials. Asian J. Current Eng. Maths. 1 (2012), 232-240 http://innovativejournal.in/index.php/ajcem/article/view/104/96

[23] Khan, S., Hassan, N. A. Makboul: 2-variable Laguerre matrix polynomials and Lie-algebraic techniques. J. Phys. A, Math. Theor. 43 (2010), Article ID 235204, 21 pages. | DOI | MR

[24] Metwally, M. S., Mohamed, M. T., Shehata, A.: On Hermite-Hermite matrix polynomials. Math. Bohem. 133 (2008), 421-434. | MR | Zbl

[25] Sastre, J., Jódar, L.: On Laguerre matrix polynomial series. Util. Math. 71 (2006), 109-130. | MR | Zbl

[26] Shehata, A.: On Tricomi and Hermite-Tricomi matrix functions of complex variable. Commun. Math. Appl. 2 (2011), 97-109. | MR | Zbl

[27] Shehata, A.: A new extension of Gegenbauer matrix polynomials and their properties. Bull. Int. Math. Virtual Inst. 2 (2012), 29-42. | MR

[28] Shehata, A.: On pseudo Legendre matrix polynomials. Int. J. Math. Sci. Eng. Appl. 6 (2012), 251-258. | MR

[29] Shehata, A.: On Rainville's matrix polynomials. Sylwan J. 158 (2014), 158-178. | MR

[30] Shehata, A.: On Rice's matrix polynomials. Afr. Mat. 25 (2014), 757-777. | DOI | MR | Zbl

[31] Shehata, A.: New kinds of hypergeometric matrix functions. British Journal of Mathematics and Computer Science 5 (2015), 92-102 \DOI 10.9734/BJMCS/2015/11492. | DOI

[32] Shehata, A.: On a new family of the extended generalized Bessel-type matrix polynomials. Mitteilungen Klosterneuburg J. 65 (2015), 100-121.

[33] Shehata, A.: On modified Laguerre matrix polynomials. J. Nat. Sci. Math. 8 (2015), 153-166. | MR

[34] Taşdelen, F., Çekim, B., Aktaş, R.: On a multivariable extension of Jacobi matrix polynomials. Comput. Math. Appl. 61 (2011), 2412-2423. | DOI | MR | Zbl

[35] Upadhyaya, L. M., Shehata, A.: On Legendre matrix polynomials and its applications. Int. Trans. Math. Sci. Comput. 4 (2011), 291-310. | MR

[36] Upadhyaya, L. M., Shehata, A.: A new extension of generalized Hermite matrix polynomials. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 165-179. | DOI | MR | Zbl

[37] Varma, S., Çekim, B., Yeşildal, F. Taşdelen: On Konhauser matrix polynomials. Ars Comb. 100 (2011), 193-204. | MR

[38] Varma, S., Taşdelen, F.: Biorthogonal matrix polynomials related to Jacobi matrix polynomials. Comput. Math. Appl. 62 (2011), 3663-3668. | DOI | MR | Zbl

Cité par Sources :