On annealed elliptic Green's function estimates
Mathematica Bohemica, Tome 140 (2015) no. 4, pp. 489-506.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a random, uniformly elliptic coefficient field $a$ on the lattice $\mathbb Z^d$. The distribution $\langle \cdot \rangle $ of the coefficient field is assumed to be stationary. Delmotte and Deuschel showed that the gradient and second mixed derivative of the parabolic Green's function $G(t,x,y)$ satisfy optimal annealed estimates which are $L^2$ and $L^1$, respectively, in probability, i.e., they obtained bounds on $\smash {\langle |\nabla _x G(t,x,y)|^2\rangle ^{{1}/{2}}}$ and $\langle |\nabla _x \nabla _y G(t,x,y)|\rangle $. In particular, the elliptic Green's function $G(x,y)$ satisfies optimal annealed bounds. In their recent work, the authors extended these elliptic bounds to higher moments, i.e., $L^p$ in probability for all $p\infty $. In this note, we present a new argument that relies purely on elliptic theory to derive the elliptic estimates for $\langle |\nabla _x G(x,y)|^2\rangle ^{{1}/{2}}$ and $\langle |\nabla _x \nabla _y G(x,y)|\rangle $.
DOI : 10.21136/MB.2015.144465
Classification : 35A01, 35Q55
Keywords: stochastic homogenization; elliptic equation; Green's function on $\mathbb Z^d$; annealed estimate
@article{10_21136_MB_2015_144465,
     author = {Marahrens, Daniel and Otto, Felix},
     title = {On annealed elliptic {Green's} function estimates},
     journal = {Mathematica Bohemica},
     pages = {489--506},
     publisher = {mathdoc},
     volume = {140},
     number = {4},
     year = {2015},
     doi = {10.21136/MB.2015.144465},
     mrnumber = {3432548},
     zbl = {06537679},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144465/}
}
TY  - JOUR
AU  - Marahrens, Daniel
AU  - Otto, Felix
TI  - On annealed elliptic Green's function estimates
JO  - Mathematica Bohemica
PY  - 2015
SP  - 489
EP  - 506
VL  - 140
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144465/
DO  - 10.21136/MB.2015.144465
LA  - en
ID  - 10_21136_MB_2015_144465
ER  - 
%0 Journal Article
%A Marahrens, Daniel
%A Otto, Felix
%T On annealed elliptic Green's function estimates
%J Mathematica Bohemica
%D 2015
%P 489-506
%V 140
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144465/
%R 10.21136/MB.2015.144465
%G en
%F 10_21136_MB_2015_144465
Marahrens, Daniel; Otto, Felix. On annealed elliptic Green's function estimates. Mathematica Bohemica, Tome 140 (2015) no. 4, pp. 489-506. doi : 10.21136/MB.2015.144465. http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144465/

Cité par Sources :