Generalized trigonometric functions in complex domain
Mathematica Bohemica, Tome 140 (2015) no. 2, pp. 223-239.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study extension of $p$-trigonometric functions $\sin _p$ and $\cos _p$ to complex domain. For $p=4, 6, 8, \dots $, the function $\sin _p$ satisfies the initial value problem which is equivalent to (*) $$-(u')^{p-2}u''-u^{p-1} =0, \quad u(0)=0, \quad u'(0)=1 $$in $\mathbb {R}$. In our recent paper, Girg, Kotrla (2014), we showed that $\sin _p(x)$ is a real analytic function for $p=4, 6, 8, \dots $ on $(-\pi _p/2, \pi _p/2)$, where $\pi _p/2 = \int _0^1(1-s^p)^{-1/p}$. This allows us to extend $\sin _p$ to complex domain by its Maclaurin series convergent on the disc $\{z\in \mathbb {C}\colon |z|\pi _p/2\}$. The question is whether this extensions $\sin _p(z)$ satisfies (*) in the sense of differential equations in complex domain. This interesting question was posed by Došlý and we show that the answer is affirmative. We also discuss the difficulties concerning the extension of $\sin _p$ to complex domain for $p=3,5,7,\dots $ Moreover, we show that the structure of the complex valued initial value problem (*) does not allow entire solutions for any $p\in \mathbb {N}$, $p>2$. Finally, we provide some graphs of real and imaginary parts of $\sin _p(z)$ and suggest some new conjectures.
DOI : 10.21136/MB.2015.144328
Classification : 33E20, 33E30, 34B15, 34M05, 34M99
Keywords: $p$-Laplacian; differential equations in complex domain; extension of $\sin _p$
@article{10_21136_MB_2015_144328,
     author = {Girg, Petr and Kotrla, Luk\'a\v{s}},
     title = {Generalized trigonometric functions in complex domain},
     journal = {Mathematica Bohemica},
     pages = {223--239},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2015},
     doi = {10.21136/MB.2015.144328},
     mrnumber = {3368496},
     zbl = {06486936},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144328/}
}
TY  - JOUR
AU  - Girg, Petr
AU  - Kotrla, Lukáš
TI  - Generalized trigonometric functions in complex domain
JO  - Mathematica Bohemica
PY  - 2015
SP  - 223
EP  - 239
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144328/
DO  - 10.21136/MB.2015.144328
LA  - en
ID  - 10_21136_MB_2015_144328
ER  - 
%0 Journal Article
%A Girg, Petr
%A Kotrla, Lukáš
%T Generalized trigonometric functions in complex domain
%J Mathematica Bohemica
%D 2015
%P 223-239
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144328/
%R 10.21136/MB.2015.144328
%G en
%F 10_21136_MB_2015_144328
Girg, Petr; Kotrla, Lukáš. Generalized trigonometric functions in complex domain. Mathematica Bohemica, Tome 140 (2015) no. 2, pp. 223-239. doi : 10.21136/MB.2015.144328. http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144328/

Cité par Sources :