Estimates of the principal eigenvalue of the $p$-Laplacian and the $p$-biharmonic operator
Mathematica Bohemica, Tome 140 (2015) no. 2, pp. 215-222.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet $p$-Laplacian and the Navier $p$-biharmonic operator on a ball of radius $R$ in $\mathbb R^N$ and its asymptotics for $p$ approaching $1$ and $\infty $. Let $p$ tend to $\infty $. There is a critical radius $R_C$ of the ball such that the principal eigenvalue goes to $\infty $ for $0$ and to $0$ for $R>R_C$. The critical radius is $R_C=1$ for any $N\in \mathbb N$ for the $p$-Laplacian and $R_C=\sqrt {2N}$ in the case of the $p$-biharmonic operator. When $p$ approaches $1$, the principal eigenvalue of the Dirichlet $p$-Laplacian is $NR^{-1}\*(1-(p-1)\log R(p-1))+o(p-1)$ while the asymptotics for the principal eigenvalue of the Navier $p$-biharmonic operator reads $2N/R^2+O(-(p-1)\log (p-1))$.
DOI : 10.21136/MB.2015.144327
Classification : 35J20, 35J25, 35J66, 35J92, 35P15, 35P30
Keywords: eigenvalue problem for $p$-Laplacian; eigenvalue problem for $p$-biharmonic operator; estimates of principal eigenvalue; asymptotic analysis
@article{10_21136_MB_2015_144327,
     author = {Benedikt, Ji\v{r}{\'\i}},
     title = {Estimates of the principal eigenvalue of the $p${-Laplacian} and the $p$-biharmonic operator},
     journal = {Mathematica Bohemica},
     pages = {215--222},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2015},
     doi = {10.21136/MB.2015.144327},
     mrnumber = {3368495},
     zbl = {06486935},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144327/}
}
TY  - JOUR
AU  - Benedikt, Jiří
TI  - Estimates of the principal eigenvalue of the $p$-Laplacian and the $p$-biharmonic operator
JO  - Mathematica Bohemica
PY  - 2015
SP  - 215
EP  - 222
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144327/
DO  - 10.21136/MB.2015.144327
LA  - en
ID  - 10_21136_MB_2015_144327
ER  - 
%0 Journal Article
%A Benedikt, Jiří
%T Estimates of the principal eigenvalue of the $p$-Laplacian and the $p$-biharmonic operator
%J Mathematica Bohemica
%D 2015
%P 215-222
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144327/
%R 10.21136/MB.2015.144327
%G en
%F 10_21136_MB_2015_144327
Benedikt, Jiří. Estimates of the principal eigenvalue of the $p$-Laplacian and the $p$-biharmonic operator. Mathematica Bohemica, Tome 140 (2015) no. 2, pp. 215-222. doi : 10.21136/MB.2015.144327. http://geodesic.mathdoc.fr/articles/10.21136/MB.2015.144327/

Cité par Sources :