Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity
Mathematica Bohemica, Tome 139 (2014) no. 4, pp. 639-647.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\chi (v)$ and the growth term $f(u)$ under homogeneous Neumann boundary conditions in a smooth bounded domain. Here it is assumed that $0 \chi (v)\leq {{\chi }_0}/{v^k}$ $(k\geq 1$, ${\chi }_0>0)$ and $\lambda _1-\mu _1 u \leq f(u)\leq \lambda _2-\mu _2 u$ $(\lambda _1,\lambda _2,\mu _1,\mu _2>0)$. It is shown that if $\chi _0$ is sufficiently small, then the system has a unique global-in-time classical solution that is uniformly bounded. This boundedness result is a generalization of a recent result by K. Fujie, M. Winkler, T. Yokota.
DOI : 10.21136/MB.2014.144140
Classification : 35A01, 35B40, 35B45, 35K60, 35M33, 92C17
Keywords: chemotaxis; global existence; boundedness
@article{10_21136_MB_2014_144140,
     author = {Fujie, Kentarou and Yokota, Tomomi},
     title = {Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity},
     journal = {Mathematica Bohemica},
     pages = {639--647},
     publisher = {mathdoc},
     volume = {139},
     number = {4},
     year = {2014},
     doi = {10.21136/MB.2014.144140},
     mrnumber = {3306853},
     zbl = {06433687},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144140/}
}
TY  - JOUR
AU  - Fujie, Kentarou
AU  - Yokota, Tomomi
TI  - Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity
JO  - Mathematica Bohemica
PY  - 2014
SP  - 639
EP  - 647
VL  - 139
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144140/
DO  - 10.21136/MB.2014.144140
LA  - en
ID  - 10_21136_MB_2014_144140
ER  - 
%0 Journal Article
%A Fujie, Kentarou
%A Yokota, Tomomi
%T Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity
%J Mathematica Bohemica
%D 2014
%P 639-647
%V 139
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144140/
%R 10.21136/MB.2014.144140
%G en
%F 10_21136_MB_2014_144140
Fujie, Kentarou; Yokota, Tomomi. Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity. Mathematica Bohemica, Tome 139 (2014) no. 4, pp. 639-647. doi : 10.21136/MB.2014.144140. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144140/

Cité par Sources :